matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvendisk. einer e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Kurvendisk. einer e-Funktion
Kurvendisk. einer e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendisk. einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 06.11.2008
Autor: Kampfkruemel

Aufgabe
Gegeben ist die Funktion f mit y = f(x) = [mm] (e^{x} [/mm] + [mm] 1)/x^{2} [/mm]

a) Bestimme das Fernverhalten.
b) Untersuche das Verhalten des Graphen in der Umgebung der Stelle x = 0.
c) Bestimme Nullstelle und Achsenabschnitt.
d) Zeichne den Graphen von f auf Basis dieser Informationen.
e) Bestimme die erste Ableitung.

Hallo zusammen,

auf Grund langer Krankheit habe ich diesen Teil in der Schule leider komplett versäumt... Kann mir bitte jemand anhand dieser Aufgabe (als Beispiel) erklären, wie ich bei den einzelnen Punkten vorgehen muss?

Ich habe diese Frage nur hier gestellt!

Liebe Grüße
Kampfkrümel

        
Bezug
Kurvendisk. einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Do 06.11.2008
Autor: leduart

Hallo
viel versaeumt ist zu allgemein.
kennst du die e-fkt.
kannst du differenzieren
weisst du, wie man Schnitstellen mit den Achsen vestimmt?
Fang -auch mit Luecken- an die Aufgabe zu loesen und sag genau, was du nicht weisst, wir koennen hier nicht in 2 3 posts 4 Wochen Schule nachholen.
Beispielaufgaben besorgst du dir am besten aus der Mitschrift von Schulkameraden oder eurem Buch. Dann wird das genauso behandelt, wie euer LehrerIn das sich vorstellt.
Gruss leduart

Bezug
                
Bezug
Kurvendisk. einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Do 06.11.2008
Autor: Kampfkruemel

Hallo,

okay, alles versäumt trifft es eher... ich weiß weder, was eine e-Funktion ist (und googeln hat mich da auch nicht schlauer gemacht), noch wie ich damit in den Teilen der Kurvendiskussion umzugehen habe...

Gruß
Kampfkrümel

Bezug
                        
Bezug
Kurvendisk. einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Do 06.11.2008
Autor: leduart

Hallo
allgemeine Exponentialfunktionen kannst du dir wenigstens fuer ganze Zahlen vorstellen. etw [mm] 2^n [/mm] oder [mm] 10^n [/mm]
du siehst direkt, dass sie fuer grosse n sehr schnell wachsen, immer schneller je groesser n wird. zwischen [mm] 2^2 [/mm] und [mm] 2^3 [/mm] ist die differenz 4 zwischen 2^10 und 2^11 ist die differen 1024 usw.
dann als naechstes 2{Bruch} das kannst du dir noch als Wurzeln vorstellen also
[mm] 2^{7/4}=\wurzel[4]{2^7} [/mm]   oder [mm] (\wurzel[4]{2})^7 [/mm]
wenn man das alles verstanden hat geht man zu reellen zahlen x im Exponenten ueber und definiert [mm] 2^x [/mm] indem man immer bessere Naeherungsbrueche fuer x angibt.
wenn man die Ableitung dieser Funktionen angibt, kann man leicht zeigen, dass die Ableitung proportional der Funktion ist. also [mm] (2^x)'=Zahl*2^x [/mm]
aus bequemlichkeit nimmt man jetzt als Grundzahl die Zahl e, bei der die "Zahl" bei der Ableitung grade 1 ist. d.h. die Funktion [mm] f(x)e^x [/mm] ist dadurch definierrt, dass f"(x)=f(x) ist.
dadurch kommt man dann auf die Darstellung von e
[mm] e-\limes_{n\rightarrow\infty}(1=1/n)^n [/mm]
Das musst du nicht alles genau wissen. wichtig fuer dich ist
[mm] (e^x)'=e^x [/mm]  und e>1  [mm] e\approx [/mm] 2,718....
und fuer grosse x waechst [mm] e^x [/mm] staerker als jede Potenz von x, also staerker als [mm] x^2 [/mm] oder staerker als [mm] x^{1234} [/mm] usw.
entsprechend geht [mm] 1/e^x=e^{-x} [/mm] schneller gegen 0 als [mm] 1/x^2 [/mm] oder [mm] 1/x^n [/mm] n beliebig gross.
Wenn du ueberhaupt differenziern kannst solltest du jetzt deine Aufgabe schaffen.
Halt es fehlt noch die Umkehrfunktion, der natuerliche Logarithmus. ln auf dem TR
es gilt : [mm] ln(e^x)=x [/mm]  und [mm] e^{ln(x)} [/mm] =x
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]