matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:06 So 21.01.2007
Autor: BeckerBecker

Aufgabe
3arccos(x)-arccos(3x-4x³)        [mm] xE\{-1;1} [/mm]

Hallo,

ich habe eine Frage zu dieser Aufgabe.
Um die Extrema herauszufinden, muss ich die erste Ableitung bilden. Dazu verwende ich hierbei die Kettenregel (?). Mache ich dies, komme ich auf folgenden Therm


[mm] 0*(1/\wurzel{1-x²})-((1/\wurzel{1-x²})*(3x-4x³))*(3-12x²)) [/mm]

= [mm] -((1/\wurzel{1-x²})*(3x-4x³))*(3-12x²)) [/mm]

= [mm] -(((3x-4x³)*(3-12x²))/\wurzel{1-x²}) [/mm]



Aber wie muss ich denn jetzt weitermachen?
Bitte helft mir.


LG
BeckerBecker




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 So 21.01.2007
Autor: Zwerglein

Hi, [mm] Becker^2, [/mm]

> 3arccos(x)-arccos(3x-4x³)        [mm]xE\{-1;1}[/mm]

Du meist aber schon die Definitionsmenge (-1;1), oder?

>  Um die Extrema herauszufinden, muss ich die erste
> Ableitung bilden. Dazu verwende ich hierbei die Kettenregel  (?).
> Mache ich dies, komme ich auf folgenden Term
>  
>
> [mm]0*(1/\wurzel{1-x²})-((1/\wurzel{1-x²})*(3x-4x³))*(3-12x²))[/mm]

Nanu? Wo kommt denn da vorne die 0 her?

Die Ableitung von y=3*arccos(x) ist doch:
y' = [mm] \bruch{-3}{\wurzel{1-x^{2}}} [/mm]

Bleibt noch der 2. Summand, also:
y = [mm] -arccos(3x-4x^{3}) [/mm]

Hierzu brauchst Du tatsächlich die Kettenregel und zwar folgendermaßen:

y' = [mm] \bruch{1}{\wurzel{1 - (3x-4x^{3})^{2}}}*(3-12x^{2}) [/mm]

Nun überprüf' das erst mal und dann fasse die beiden Summanden zusammen!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]