matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Kurvendiskussion
Kurvendiskussion < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: 2. Ableitung
Status: (Frage) beantwortet Status 
Datum: 16:21 Di 13.03.2007
Autor: Stromberg

Aufgabe
f(x) = [mm] \bruch{x^2}{1-x} [/mm]

Ich habe die erste Ableitung gemacht und komme zu folgendem Ergebnis:

f'(x) = [mm] \bruch{2x-x^2}{(1-x)^2} [/mm]

Das müsste auch soweit richtig sein.

Nun möchte ich die zweite Ableitung machen, komme aber jetzt schon nach dem dritten Mal nachrechnen nicht auf das Ergebnis der Schule, welches lautet:

f''(x) = [mm] \bruch{2}{(1-x)^3} [/mm]

Ich habe Abgeleitet und Mal die Klammern aufgelöst und zwar wie folgt:

[mm] (2-2x-2x+2x^2)-(2x-x^2)(2-2x)(-1) [/mm] / (1-x)4

Für den Zähler bekomme ich nach weiterem Auflösen der Klammern nämlich ein [mm] x^3 [/mm] mit rein, welches in der Lösung laut Schule nicht vorkommen darf.

Vielleicht kann sich das Mal jemand anschauen.

Dankeschön

Gruß,
Stephan


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Di 13.03.2007
Autor: Ankh

Von hier
> f'(x) = [mm]\bruch{2x-x^2}{(1-x)^2}[/mm]

nach hier

> [mm](2-2x-2x+2x^2)-(2x-x^2)(2-2x)(-1)[/mm] / (1-x)4

hast du dich verrechnet.
$f'(x) = [mm] \bruch{(-2x+2)(1-x)² - (2x-x²)(-2)(1-x)}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{(-2x+2)(1-x)² + (2x-x²)(-2x+2)}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{(-2x+2)((1-x)² + (2x-x²))}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{(-2x+2)(1+x²-2x + 2x - x²)}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{(-2x+2)}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{2(1-x)}{(1-x)^4}$ [/mm]
$ = [mm] \bruch{2}{(1-x)^3}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]