matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 10.04.2008
Autor: argl

Aufgabe
a) Die Funktion $f(x) = [mm] \bruch{1}{4}\ x^2 [/mm] - [mm] \bruch{1}{2}\ [/mm] x + 2$ soll diskutiert werden.
b) Zeigen Sie, dass der Graph der Funktion $g(x)= [mm] -x^2 [/mm] + 4,5 x -3$ den
Graphen von $f(x)$ in einem Punkt berührt.
c) Wie lautet die Gleichung der gemeinsamen Tangenten in dem Punkt ?

Also, eigentlich wäre die Aufgabe ja kein Problem ... aber ich hab hier ein Problem mit den Nullstellen.

1. Symmetrie

$f(-x) [mm] \not= [/mm] f(x)$ -> keine Symmetrie zur X-Achse
$f(-x) [mm] \not= [/mm] -f(x)$ -> keine Symmetrie zum Ursprung

2. Definitionsbereich

--> ganzrationale Funktion -> $D=R$

3. Nullstellen

--> so und hier hängt es:

Nach der Mitternachtsformel erhalte ich ich aber 1 +/- eine negative Wurzel. Wo ist mein Fehler ??? (Ich krieg die Wurzel hier nicht hin :-( )



        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Do 10.04.2008
Autor: jazzy_mathe_

Also:
[mm] \bruch{1}{4} x^{2} [/mm] - 0,5 x +2= 0  | *4
[mm] x^{2}- [/mm] 2x+8= o
[mm] x_{1,2} [/mm] = 1 [mm] \pm \wurzel{1-8} [/mm]
[mm] x_{1,2} [/mm] = 1 [mm] \pm \wurzel{-7} [/mm]

Der Graph besitz keine Nullstellen.. es muss ja net jeder graph eine nullstelle habn^^

LG

Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Do 10.04.2008
Autor: argl

hmmm, also wenn eine unlösbare Gleichung entsteht hat der Graph keine Nullstellen. hab ich total vergessen, die meisten graphen haben ja eine. danke. :-)

Bezug
                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Do 10.04.2008
Autor: jazzy_mathe_

Hast du einen Taschenrechner mit Grafikfunktion?
wenn ja kannst du dir den Graphen auch vorher zeichnen lassen da siehst du dann auch meist vorher ob er Nullstellen hast damit kannst du dann auch prüfen ob dein ergebnis richtig ist.

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Do 10.04.2008
Autor: argl

Aufgabe
Aufgabe a)

Extremwerte:

Die 1. Ableitungen der Funktion lautet: $f'(x) = [mm] \bruch{1}{2}\ [/mm]  x - [mm] \bruch{1}{2}$ [/mm]


Die Nullstellen der ersten Ableitung lauten

[mm] $\bruch{1}{2}\ [/mm]  x - [mm] \bruch{1}{2}\ [/mm] = 0|  + [mm] \bruch{1}{2}\$ [/mm]

$ = [mm] \bruch{1}{2}\ [/mm]  x = [mm] \bruch{1}{2}\ [/mm] |   / [mm] \bruch{1}{2}\$ [/mm]

$ = [mm] x_0 [/mm] = 1 $

Die erste Ableitung hat also eine Nullstelle bei x=1.

2. Ableitung: $f''(x)= [mm] \bruch{1}{2}\$ [/mm]

--> $f''(1) > 0$ = Tiefpunkt bei x=1

y-Koordinate: $f(1) = 1,75$ --> Tiefpunkt bei (1;1,75)

Wertemenge: W= R+

Dürfte doch so weit stimmen, oder ???




Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Do 10.04.2008
Autor: leduart

Hallo
Alles richtig. Nur für ne einfache Parabel eigentlich zu umständlich. schreibt man sie als [mm] f(x)=1/4(x-1)^2+7/4 [/mm]
sieht man alles direkt, ohne Differentialrechnung:
1. keine Nullstellen, da nach oben geöffnet und Scheitel bei (1,7/4)
2. Scheitel=Min
3. Symmetrisch zu der Geraden x=1
Du bist nicht schuld, wenn ihr sowas mit Differentialrechnung macht, schade find ich wenn man etwas, was alle längst vor der Enrfindung der differentialrechnung konnten damit auf umständliche weise berechnet. Vielleicht frägst du mal deine mathelehrerIn warum?
Gruss leduart

Bezug
                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Do 10.04.2008
Autor: argl

Aufgabe
b)

Ähm, ich hab keine Mathelehrerin, ich bin externer Abiturient, mach alles im Selbststudium und rechne zur Zeit alle Aufgaben die ich im Mathebuch noch nicht gelöst hab nochmal durch. Die hier bereitet mir allerdings, keine Ahung warum, Kopfschmerzen (ich löse diese Aufgabe mit Differentialrechnung, weil sie unter diesem Kapitel steht).

Also zur Aufgabe:

--> ich berechne zuerst die Nullstellen:

$g(x) = [mm] -x^2 [/mm] + 4,5 x - 3

-> nach der p-q-Formel würde sich ergeben:

-2,25 +/- [mm] \wurzel{8,0625}\ [/mm]

und ich erhalte als Nullstellen [mm] x_1=0,7 [/mm] und [mm] x_2=-5,1 [/mm] (gerundet).

Wenn ich die Funktion plotten lasse, kommt aber was ganz anderes
raus (???). P und Q ist doch eindeutig erkenn- und einsetzbar und auch
nach dem zehnten Nachrechnen komme ich darauf. Davon mal ganz
abgesehen entsteht kein Berührungspunkt mit diesen Nullstellen.

Ich weiss es ist ne einfach Aufgabe, aber ... naja ... manchmal hängts halt.

Bezug
                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Do 10.04.2008
Autor: cagivamito

Bei deiner pq Formel ist was schief gegangen:

Ausgangspunkt:
[mm] 0=-x^2+4,5x-3 [/mm]  

alles *(-1)

[mm] 0=x^2-4,5x+3 [/mm]

p=-4,5
q=3

[mm] x_{1}=\bruch{4,5}{2}-\wurzel{(\bruch{-4,5}{2})^2-3} [/mm]

[mm] x_{1}=0,814 [/mm]

[mm] x_{2}=\bruch{4,5}{2}+\wurzel{(\bruch{-4,5}{2})^2-3} [/mm]

[mm] x_{2}=3,686 [/mm]

Sieht das so aus wie bei deinem Graph? Habe meinen graphischen Rechner gerade nicht zur Hand.

Gruß Jens


Bezug
        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Do 10.04.2008
Autor: Tyskie84

Hallo!

Wir haben ja eine quadratische Gleichung und du willst due Nullstellen bestimmen dazu musst du die Gleichung null setzen und mit Hilfe der pq Formel die Nullstellen bestimmen. Mein Vorredner und du hatten recht dass es keine Nullstellen gibt in [mm] \IR. [/mm] Das kannst du dir auch ganz einfach und schnell klar machen indem wir die quadratische Ergänzung anwenden.

Es ist f(x)=x²-2x+8=(x-1)²+7 Wie du siehst ist das eine Normalparabel um eine Einheit nach rechts und 7 Einheiten nach oben verschoben [mm] \Rightarrow [/mm] die Funktion kann keine reellen Nullstellen haben.

Achja 1&2 hast du richtig gelöst :-)
[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]