matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Sattelpunkt
Status: (Frage) beantwortet Status 
Datum: 09:36 Do 19.03.2009
Autor: Ceryni

Aufgabe
Zeigen Sie, dass die Funktion f_(x)= [mm] -0,5x^5 [/mm] - [mm] \bruch{1}{4}x^3 [/mm] bei P(0/0) einen Sattelpunkt hat.

Alles, was ich über einen Sattelpunkt weiß, ist, dass er ein Wendepunkt mit der Steigung 0 hat....

Wie gehe ich nun an diese Aufgabe ran?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 19.03.2009
Autor: fred97


> Zeigen Sie, dass die Funktion f_(x)= [mm]-0,5x^5[/mm] -
> [mm]\bruch{1}{4}x^3[/mm] bei P(0/0) einen Sattelpunkt hat.
>  Alles, was ich über einen Sattelpunkt weiß, ist, dass er
> ein Wendepunkt mit der Steigung 0 hat....


Dann steht doch Dein Programm !!
            
              $f'(0) = ?$  , $f''(0) = ?$, $f'''(0) = ?$

FRED



>  
> Wie gehe ich nun an diese Aufgabe ran?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Do 19.03.2009
Autor: Ceryni


> > Zeigen Sie, dass die Funktion f_(x)= [mm]-0,5x^5[/mm] -
> > [mm]\bruch{1}{4}x^3[/mm] bei P(0/0) einen Sattelpunkt hat.
>  >  Alles, was ich über einen Sattelpunkt weiß, ist, dass
> er
> > ein Wendepunkt mit der Steigung 0 hat....
>  
>
> Dann steht doch Dein Programm !!
>              
> [mm]f'(0) = ?[/mm]  , [mm]f''(0) = ?[/mm], [mm]f'''(0) = ?[/mm]
>  
> FRED
>  

Vielen Dank für diesen "Denkanstoß". Reicht es, bei solchen Aufgaben einfach nur die Rechnung aufzuschreiben oder benötige ich auch noch einen Antwortsatz? Ich vergesse die meistens und büße somit Punkte ein. :/

Bin ich mit [mm]f'''(0) = -1,5[/mm] richtig?


Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Do 19.03.2009
Autor: angela.h.b.


> > > Zeigen Sie, dass die Funktion f_(x)= [mm]-0,5x^5[/mm] -
> > > [mm]\bruch{1}{4}x^3[/mm] bei P(0/0) einen Sattelpunkt hat.
>  >  >  Alles, was ich über einen Sattelpunkt weiß, ist,
> dass
> > er
> > > ein Wendepunkt mit der Steigung 0 hat....
>  >  
> >
> > Dann steht doch Dein Programm !!
>  >              
> > [mm]f'(0) = ?[/mm]  , [mm]f''(0) = ?[/mm], [mm]f'''(0) = ?[/mm]
>  >  
> > FRED
>  >  
> Vielen Dank für diesen "Denkanstoß". Reicht es, bei solchen
> Aufgaben einfach nur die Rechnung aufzuschreiben oder
> benötige ich auch noch einen Antwortsatz? Ich vergesse die
> meistens und büße somit Punkte ein. :/
>  
> Bin ich mit [mm]f'''(0) = -1,5[/mm] richtig?

Hallo,

ja, das ist richtig.

Du solltest Deine Rechnung keinesfalls kommentarlos hinschreiben, sondern immer dazuschreiben, was Du bezweckst und welche Schlüsse Du ziehst, diese Schlüsse sind mindestens so wichtig wie die Rechnung.

Nicht zuletzt hilfst Du damit auch Dir selbst, denn Du versinkst nicht so leicht im Chaos.

Hier könnte z.B.  dies stehen:

f'(0)=0,   also hat f bei x=0 eine waagerechte Tangente

f''(0)=0,   also kann bei x=0 ein Wendepunkt vorliegen.

[mm] f'''(0)=-1.5\not=0, [/mm] also hat man an der Stelle x=0 einen Wendepunkt, wegen de waagerechten Tangente ist dieser Wp ein Sattelpunkt.

Gruß v. Angela

Bezug
                                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Do 19.03.2009
Autor: Ceryni


> Hallo,
>  
> ja, das ist richtig.
>  
> Du solltest Deine Rechnung keinesfalls kommentarlos
> hinschreiben, sondern immer dazuschreiben, was Du bezweckst
> und welche Schlüsse Du ziehst, diese Schlüsse sind
> mindestens so wichtig wie die Rechnung.
>  
> Nicht zuletzt hilfst Du damit auch Dir selbst, denn Du
> versinkst nicht so leicht im Chaos.
>  
> Hier könnte z.B.  dies stehen:
>  
> f'(0)=0,   also hat f bei x=0 eine waagerechte Tangente
>  
> f''(0)=0,   also kann bei x=0 ein Wendepunkt vorliegen.
>  
> [mm]f'''(0)=-1.5\not=0,[/mm] also hat man an der Stelle x=0 einen
> Wendepunkt, wegen de waagerechten Tangente ist dieser Wp
> ein Sattelpunkt.
>  
> Gruß v. Angela


Vielen Dank :) So ein Antwortbeispiel hab ich gesucht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]