matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Kurvendiskussion
Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: krümmungsverhalten
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 25.06.2011
Autor: mwieland

Aufgabe
Disekutieren Sie folgende Kurve:

[mm] f(x)=(x^2+1)*e^{\vmat{ x-1 }} [/mm]

Hallo leute, hätte eine frage zu dieser aufgabe!

Bin jetzt bei dem Punkt Krümmungsverhalten für den Fall 2 (x-1 < 0)

Beim krümmungsverhalten untersucht man ja ob die zweite ableitung < bzw. [mm] \le [/mm] 0 ist (streng konkav/konkav) oder ob sie > bzw. [mm] \ge [/mm] 0 ist (streng konvex/konvex), nicht wahr?

hier hab ich nun für diesen Fall eine zweite ableitung von

[mm] f''(x)=e^{-x+1}(x^2-4x+1) [/mm]

wie untersucht man das am besten (=richtigsten) auf das krümmungsverhalten? muss ich da eine Grenzwertuntersuchung machen oder suche ich mir einfach ein paar punkte (zB in der nähe der Wendepunkte) raus und teste einfach durch oder wie macht man das?

vielen dank schon mal für eure Hilfe!

lg markus

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 25.06.2011
Autor: fred97


> Disekutieren Sie folgende Kurve:
>  
> [mm]f(x)=(x^2+1)*e^{\vmat{ x-1 }}[/mm]
>  Hallo leute, hätte eine
> frage zu dieser aufgabe!
>  
> Bin jetzt bei dem Punkt Krümmungsverhalten für den Fall 2
> (x-1 < 0)
>  
> Beim krümmungsverhalten untersucht man ja ob die zweite
> ableitung < bzw. [mm]\le[/mm] 0 ist (streng konkav/konkav) oder ob
> sie > bzw. [mm]\ge[/mm] 0 ist (streng konvex/konvex), nicht wahr?
>  
> hier hab ich nun für diesen Fall eine zweite ableitung von
>
> [mm]f''(x)=e^{-x+1}(x^2-4x+1)[/mm]
>  
> wie untersucht man das am besten (=richtigsten) auf das
> krümmungsverhalten? muss ich da eine Grenzwertuntersuchung
> machen oder suche ich mir einfach ein paar punkte (zB in
> der nähe der Wendepunkte) raus und teste einfach durch
> oder wie macht man das?


Überlege Dir in welchen Teilintervallen von [mm] (-\infty,1) [/mm] die Funktion

$ [mm] f''(x)=e^{-x+1}(x^2-4x+1) [/mm] $

welches Vorzeichen hat.

FRED

>  
> vielen dank schon mal für eure Hilfe!
>  
> lg markus


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Sa 25.06.2011
Autor: mwieland

das kann ich aber nur durch ausprobieren mit verschiedenen werten machen, oder gibt es hier irgendeinen trick?

dank und lg

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 25.06.2011
Autor: fred97

Es ist

            

$ [mm] f''(x)=e^{-x+1}(x^2-4x+1) \ge [/mm] 0 $  (bzw. [mm] \le [/mm] 0)

               [mm] \gdw [/mm]



[mm] $(x^2-4x+1) \ge [/mm] 0 $  (bzw. [mm] \le [/mm] 0)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]