matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Kurvenintegral
Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mo 17.11.2008
Autor: Linn

Aufgabe
(a) γ sei die Kurve in C, deren Spur das Stück des Graphen der Normalparabel Imz=(Rez)² im Bereich -1<=Rez<=1 von -1+i nach 1+i duchläuft. Berechne Integral (z-i)dz
(b) Es sei γ1 die Strecke von 0 nach 1+i und γ2 die Kurve aus den Strecken von 0 nach 1 und von dort nach 1+i. Berechne Integral über γ1 Re(z)dz und Integral über γ2 Re(z)dz

Ich hab die Aufgabe ein Kurvenintegral zu berechnen und bin ein bisschen verwirrt, weil die Aufgabe anders gestellt ist als gewohnt.

Zu (a):
ich weiß, dass man ein Kurvenintegral berechnet mit Integral f(z)dz= Integral von a nach be f(γ(t))⋅γ'(t)dt
Allerdings hatten wir bisher immer folgende Angaben:
Bsp. f(z)=1z,γ:[0;2Pi],γ(t) =e^it

Ist das bei der obigen Aufgabe dann so:
f(z)=z² wegen der Parabel, γ:[-1;1] weil da nur die x-Werte angegeben werden, γ(t)=? da bin ich völlig durcheinander, hab mal gesehen, dass jemand t+it² genommen hat, aber was mach ich dann mit (z-i)? Oder ist das f(z)? Aber das beschreibt doch keine Parabel?

Zu (b):
Da würde ich folgende Formel nehmen:
Imtegral f(t)dt= Integral u(t)dt + i*Integral v(t)dt
und dann einfach den 2.Teil weglassen? Aber dann hätt ich doch nur den reellen Teil von 0 bis 1, oder?

Kann mich bitte jemand entwirren?
Vielen dank im Voraus, Linn

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mo 17.11.2008
Autor: leduart

Hallo
die Kurve [mm] \gamma(t) [/mm] ist hier wirklich  [mm] \gamma(t)=t+it^2 [/mm]
deine Funktion f(z)=z-i  da setzest du jetzt [mm] f(\gamma(t))* \gamma'(t) [/mm] und integrierst von -1 bis +1. das gibt doch genau die Kurve!
[mm] z^2 [/mm] ist NICHT die Kurve und nicht f(z)
b) die erste "kurve" ist  [mm] \gamma(t)=t*(1+i) [/mm] t von 0 bis 1. das wieder in die gegebene fkt f(z)=Re(z) einsetzen.
die zweite "kurve" musst du aus den 2 Stuecken zusammensetzen und ueber die dann einzeln integrieren. wieder das gegebene f(z)
Dich wundert vielleicht nur wie "einfach" die gegebenen f(z) sind!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]