matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Kurvenintegral
Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 26.02.2009
Autor: hayabusa

Aufgabe
Berechne [mm]\int_\alpha z*e^{z^2}dz[/mm] für [mm]\alpha[/mm].

[mm]\alpha[/mm] ist das Stück der Parabel mit der Gleichung [mm]y=x^2[/mm] zwischen den Punkten [mm]0[/mm] und [mm]1+i[/mm].

Mein Ansatz lautet :
[mm]\alpha(t)=t+t^2i, t\in[0,1]\subset \IR [/mm]

[mm] \alpha'(t)=1+2ti[/mm]

[mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]

Weiter weiß ich nicht. Es soll nicht der Residuensatz benutzt werden. Kann man vielleicht den Weg [mm]\alpha(t)[/mm] anders parametrisieren, sodass ein einfacheres Integral entsteht?

Gruß,
hayabusa.

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Do 26.02.2009
Autor: rainerS

Hallo!

> Berechne [mm]\int_\alpha z*e^{z^2}dz[/mm] für [mm]\alpha[/mm].
>  
> [mm]\alpha[/mm] ist das Stück der Parabel mit der Gleichung [mm]y=x^2[/mm]
> zwischen den Punkten [mm]0[/mm] und [mm]1+i[/mm].
>  Mein Ansatz lautet :
>  [mm]\alpha(t)=t+t^2i, t\in[0,1]\subset \IR [/mm]
>  
> [mm]\alpha'(t)=1+2ti[/mm]
>  
> [mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]
>  
> Weiter weiß ich nicht. Es soll nicht der Residuensatz
> benutzt werden. Kann man vielleicht den Weg [mm]\alpha(t)[/mm]
> anders parametrisieren, sodass ein einfacheres Integral
> entsteht?

Der Integrand [mm] $f(z)=z*e^{z^2}$ [/mm] ist in ganz [mm] $\IC$ [/mm] holomorph, daher gibt es eine komplexe Stammfunktion F mit $F'(z)=f(z)$, und das Kurvenintegral hängt nur von Anfangs- und Endpunkt ab:

[mm] \int_\alpha z*e^{z^2}dz = F(\alpha(1)) -F(\alpha(0)) = F(1+i)-F(0) [/mm].

Du musst also nur die Stammfunktion finden.

Viele Grüße
   Rainer

Bezug
                
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Fr 27.02.2009
Autor: hayabusa

Leider weiß ich nicht, wie ich die Stammfunktion bei solch einem Integral finden soll.  
> > [mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]

Kann man den Integranden noch vereinfachen?

Gruß,
hayabusa.


Bezug
                        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 27.02.2009
Autor: reverend

Hallo hayabusa,

warum gehst Du denn nicht auf den Hinweis von rainerS ein? Die Stammfunktion [mm] \bruch{1}{2}e^{z^2} [/mm] ist doch schnell gefunden, und ich sehe nicht, inwiefern Du den Residuensatz dazu brauchst.

Dein Ansatz ist eher kompliziert zu rechnen. In jedem Fall würde ich den Integranden in Real- und Imaginärteil auftrennen. Was dann jeweils bleibt, ist deutlich einfacher zu erledigen.

Grüße
reverend

Bezug
                                
Bezug
Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:38 Fr 27.02.2009
Autor: hayabusa

Stimmt, jetzt sehe ich es auch !
Danke an euch

hayabusa



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]