matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Kurvenschar
Kurvenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Di 21.02.2012
Autor: Julian92

Hallo Leute,

ich sitze nun schon seit einiger Zeit an folgender Aufgabe:

Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau dann keine Nullstelle, wenn
a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

Fa(x)= [mm] ln(x^2)+a/x [/mm]      x>0


Mein Ansatz:
Zunächst einmal muss das globale Minimum der Funktion ja über der x-Achse liegen, damit die Funktion keine Nullstellen hat.
Globales Minimum ( [mm] a/2|ln((a^2)/4)+2) [/mm]
Also: [mm] ln((a^2/4)+2)>0 [/mm]
Wenn ich nun die e-Funktion anwende erhalte ich: [mm] (a^2/4)+e^2>1. [/mm]
Ich habe leider keine Idee wie ich nun auf a*e>2 komme.

Ich hoffe es kann mir jemand helfen :)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.matheboard.de/thread.php?threadid=483892


        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Di 21.02.2012
Autor: abakus


> Hallo Leute,
>  
> ich sitze nun schon seit einiger Zeit an folgender
> Aufgabe:
>  
> Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau
> dann keine Nullstelle, wenn
>  a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

>  
> Fa(x)= [mm]ln(x^2)+a/x[/mm]      x>0
>  
>
> Mein Ansatz:
>  Zunächst einmal muss das globale Minimum der Funktion ja
> über der x-Achse liegen, damit die Funktion keine
> Nullstellen hat.
>  Globales Minimum ( [mm]a/2|ln((a^2)/4)+2)[/mm]
>  Also: [mm]ln((a^2/4)+2)>0[/mm]
>  Wenn ich nun die e-Funktion anwende erhalte ich:
> [mm](a^2/4)+e^2>1.[/mm]

Hallo,
ich habe das alles nicht nachgerechnet.
Falls alles richtig ist, hast du also
[mm](\bruch{a}{2})^2+e^2<1[/mm]
Beidseitige Subtraktion von ae liefert
[mm](\bruch{a}{2})^2-ae+e^2<1-ae[/mm]
[mm](\bruch{a}{2}-e)^2<1-ae[/mm]
Das ist auf alle Fälle NICHT möglich, wenn 1-ae Null oder negativ ist.

Gruß Abakus


>  Ich habe leider keine Idee wie ich nun auf a*e>2 komme.
>  
> Ich hoffe es kann mir jemand helfen :)
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?threadid=483892
>  


Bezug
        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Di 21.02.2012
Autor: Melvissimo

Hallo Julian92,

> Hallo Leute,
>  
> ich sitze nun schon seit einiger Zeit an folgender
> Aufgabe:
>  
> Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau
> dann keine Nullstelle, wenn
>  a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

>  
> Fa(x)= [mm]ln(x^2)+a/x[/mm]      x>0
>  
>
> Mein Ansatz:
>  Zunächst einmal muss das globale Minimum der Funktion ja
> über der x-Achse liegen, damit die Funktion keine
> Nullstellen hat.
>  Globales Minimum ( [mm]a/2|ln((a^2)/4)+2)[/mm] [ok]
>  Also: [mm]ln((a^2/4)+2)>0[/mm] [notok]

Hier darfst du doch nicht einfach die 2 mit in den Logarithmus ziehen. Dein Extrempunkt hat nach wie vor die y-Kordinate [mm] ln((a^2)/4)+2[/mm].

Nun gelte [mm]a*e>2 \gdw a>\bruch{2}{e}[/mm]. Das setzt du in die y-Koordinate ein:
[mm] ln(a^2/4)+2 > ln((\bruch{2}{e})^2/4)+2 = ln(\bruch{1}{e^2})+2 = -2 * ln(e) + 2 = 0[/mm]. Du warst ziemlich dicht dran ;)


>  Wenn ich nun die e-Funktion anwende erhalte ich:
> [mm](a^2/4)+e^2>1.[/mm]
>  Ich habe leider keine Idee wie ich nun auf a*e>2 komme.
>  
> Ich hoffe es kann mir jemand helfen :)
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?threadid=483892
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]