matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenL-R-Zerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - L-R-Zerlegung
L-R-Zerlegung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L-R-Zerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:08 So 27.01.2008
Autor: chipbit

Aufgabe
Für i,j=1,...,n, [mm] i\not= [/mm] j und [mm] \lambda \in \IK [/mm] sei die lineare Abbildung [mm] Q_i^j (\lambda):\IK^n \to \IK^n [/mm] definiert durch [mm] Q_i^j (\lambda)(x)=x+ \lambda x_j e_i, [/mm] wobei [mm] x=(x_1,...,x_n)\in \IK^n [/mm] und [mm] {e_1,...,e_n} [/mm] die kanonische Basis des [mm] \IK^n [/mm] sei.

i) Berechnen Sie bezüglich der kanonischen Basis die darstellende Matrix der Abbildung, die wir wieder mit [mm] Q_i^j(\lambda) [/mm] bezeichnen. Überlegen Sie, was das Ergebnis der Multiplikation einer Matrix [mm] A\in M(n,\IK) [/mm] von links mit [mm] Q_i^j(\lambda) [/mm] ist.
ii) Warum ist [mm] Q_i^j(\lambda) [/mm] invertierbar?
iii) Sei A invertierbar und der Gaußalgorithmus ohne Zeilenvertauschung durchführbar. Zeigen Sie, daß eine untere Dreiecksmatrix [mm] L\in GL(n,\IK) [/mm] mit det L=1 und einer oberen Dreiecksmatrix [mm] R\in GL(n,\IK) [/mm] existieren, so daß gilt [mm] A=L\*R. [/mm]

Hallo,
mein erstes Problem bei dieser Aufgabe ist, die darstellende Matrix. Ich bekomme das irgendwie nicht auf die Reihe. der zweite Teil von i), also das mit der Multiplikation von links ist an sich ja unproblematisch. Das ich das mit der darstellenden Matrix nicht hinbekommen, liegt vielleicht daran, das ich mir vielleicht einfach nicht vorstellen kann was diese lineare Abbildung macht bzw. ich nicht genau verstehe wie man eine darstellende Matrix berechnet.
Zu ii) kann ich hier eigentlich verwenden, das eine Matrix invertierbar ist, wenn ihre Determinante [mm] \not=0 [/mm] ist? Oder wie muss man das dann machen?
Mit iii) habe ich mich noch nicht wirklich beschäftigt, wollte lieber erstmal die anderen beiden Teilaufgaben haben bevor ich mich da dran mache, aber falls wer schon einen Hinweis oder Tipp zu dieser Aufgabe hat, wäre ich natürlich schon sehr dankbar.

        
Bezug
L-R-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 So 27.01.2008
Autor: leduart

Hallo
die darstellende matrix hat einfach als Spalten die Bilder der Basisvektoren.
Also schreibs mal für [mm] K^3 [/mm] auf, und du siehst wie es geht.
Gruss leduart

Bezug
                
Bezug
L-R-Zerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:21 So 27.01.2008
Autor: chipbit

Mh, also wir hatten dazu schon mal was, unter den gleichen Voraussetzungen nur statt [mm] Q_i^j [/mm] hatten wir [mm] P_i^j(x)=x+(x_j-x_i)e_i+(x_i-x_j)e_j [/mm] . Da haben wir dann [mm] P_i^j(e_k)= e_k+(0-0)e_i+(0-0)e_j=e_k [/mm] ,
[mm] k\not=j,i: P_i^j(e_j)=e_j+(1-0)e_i+(0-1)e_j=e_i [/mm]
           [mm] P_i^j(e_i)=e_i+(0-1)e_i+(1-0)e_j=e_j [/mm] .
Wenn ich das was wir da gemacht haben, mit dem Q mache, dann komme ich auf: [mm] Q_i^j(\lambda)(e_i)=e_i+ \lambda [/mm] 0 [mm] e_i=e_i [/mm]
und [mm] Q_i^j(\lambda)(e_j)=e_j+ \lambda 1e_i= e_j+\lambda e_i [/mm] .
Ist das so richtig? Sagt mir das jetzt das in der Matrix an der i-ten Stelle alles so  bleibt, aber an der j-ten Stelle [mm] \lambda [/mm] (i-te Stelle) dazu addiert werden muss? Oder wie muss man das interpretieren?

Bezug
                        
Bezug
L-R-Zerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 29.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]