matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - LGS
LGS < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Lineare Gleichungssystem löse
Status: (Frage) beantwortet Status 
Datum: 00:17 Mo 22.04.2013
Autor: Titanium

Aufgabe
Lösen Sie das lineare Gleichungssystem
(3+5i) zi +(4- 7i) z2 = 10+ 9i
(2- 6i) z1 + (5-3i) z2 = 5 -i.

( Gesucht sind zwei  komplexe Zahlen z1 = x1 +y1i und z2= x2 + y2i mit x1, y1, x2, y2 Element aus R, welche die beiden Gleichungen erfüllt.)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Ich bin folgendermaßen vorgegangen, um diese Aufgabe zu lösen:
I           (3+5i) z1+ (4-7i) z2 = 10+9i
                      z1 + (4-7i) z2= (10+9i) / (3+5i)
                      z1                 = (10+9i) / (3+5i) - 4 z2+ 7i z2

II           (2- 6i) z1 +( 5-3i) z2 = 5-i
              
                                 I in II
1,125 + 51,875 i -3 z2 - 17z2i -42 = 5+i
                                z2                   = - (45,875-50,875i)/ (3+17i)


Da diese Gleichungen extrem lang wurden beim Rechnen, habe ich einige Zwischenschritte weggelassen. Bin ich auf dem totalen Holzweg oder sieht das bis jetzt so richtig aus?

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Mo 22.04.2013
Autor: reverend

Hallo Titanium,

ich kann Dir nicht ganz folgen.

> Lösen Sie das lineare Gleichungssystem
> (3+5i) zi +(4- 7i) z2 = 10+ 9i
> (2- 6i) z1 + (5-3i) z2 = 5 -i.

>

> ( Gesucht sind zwei komplexe Zahlen z1 = x1 +y1i und z2=
> x2 + y2i mit x1, y1, x2, y2 Element aus R, welche die
> beiden Gleichungen erfüllt.)

Es wäre schön, wenn Du die Formeldarstellung des Forums benutzt. Dann sind Deine Gleichungen gleich viel besser lesbar. ;-)

> Ich bin folgendermaßen vorgegangen, um diese Aufgabe zu
> lösen:
> I (3+5i) z1+ (4-7i) z2 = 10+9i
> z1 + (4-7i) z2= (10+9i) / (3+5i)
> z1 = (10+9i) /
> (3+5i) - 4 z2+ 7i z2

Schon [mm] z_1 [/mm] und [mm] z_2 [/mm] würden die Lesbarkeit deutlich verbessern...
Ansonsten: bis hierher richtig.

> II (2- 6i) z1 +( 5-3i) z2 = 5-i

>

> I in II
> 1,125 + 51,875 i -3 z2 - 17z2i -42 = 5+i
> z2 = -
> (45,875-50,875i)/ (3+17i)

Tja, und das kann ich schon nicht mehr nachvollziehen.

> Da diese Gleichungen extrem lang wurden beim Rechnen, habe
> ich einige Zwischenschritte weggelassen. Bin ich auf dem
> totalen Holzweg oder sieht das bis jetzt so richtig aus?

Einfacher nachzuvollziehen wäre wohl das Gaußverfahren, aber prinzipiell spricht überhaupt nichts gegen das von Dir verwendet Einsetzungsverfahren. Man könnte Dir leichter folgen, wenn Du zwischendurch ein bisschen vereinfachen würdest, also z.B. [mm] \bruch{10+9i}{3+5i}=\bruch{1}{34}(75-23i). [/mm]

Wie es aussieht, hat der Aufgabensteller nicht gerade Wert auf "einfache" komplexe Zahlen gelegt.

Grüße
reverend

Bezug
                
Bezug
LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Mo 22.04.2013
Autor: Titanium


Danke vielmals.. und mit der Schreibweise werde ich in Zukunft achten und versuche es  jetzt auch mal direkt,
als Lösung hab ich für z1 [mm] =289,5-325\bruch{15}{34} [/mm] und
für z2= [mm] -\bruch{584}{17}-\bruch{364i}{17} [/mm]
ist das Ergebnis hierfür richtig?

Gruß

Bezug
                        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 03:07 Mo 22.04.2013
Autor: reverend

Hallo nochmal,

> Danke vielmals.. und mit der Schreibweise werde ich in
> Zukunft achten und versuche es jetzt auch mal direkt,

Super. Das sieht doch gleich viel besser aus! [daumenhoch]

> als Lösung hab ich für z1 [mm]=289,5-325\bruch{15}{34}[/mm] und
> für z2= [mm]-\bruch{584}{17}-\bruch{364i}{17}[/mm]
> ist das Ergebnis hierfür richtig?

Hm. Bei mir geht die Probe nicht auf.
Wie bist Du dahin gekommen?
Rechne erst nochmal selbst nach, aber wenn Du keinen Fehler in der Rechnung findest, dann werden wir nur helfen können, wenn Du sie mit möglichst vielen Zwischenschritten postest. Das ist u.U. viel Schreibarbeit, daher lohnt es sich, erst einmal selbst nach Fehlern zu suchen.

Es gibt online-Rechner für komplexe Zahlen. Vielleicht helfen die ja schonmal bei der Kontrolle von Zwischenergebnissen?

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]