matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS in Z/2Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - LGS in Z/2Z
LGS in Z/2Z < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS in Z/2Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 So 27.11.2011
Autor: Rat62

Aufgabe
Zu lösen ist ein LGS in [mm] \IZ/2\IZ [/mm] mit [mm] n^2 [/mm] Variablen. Die Matrix ist dünn besetzt, in jeder Zeile sind höchstens 2n-1 Einträge [mm] \not= [/mm] 0.

Ich habe das Gaußsche Eliminationsverfahren in Python programmiert und benutze Bit-Operatoren (and für Multiplikation, xor für Addition) auf großen Ganzzahlen. Das funktioniert ganz gut, berücksichtigt aber nicht, dass die Matrix dünn besetzt ist. Laufzeit bei n=145 also [mm] \approx [/mm] 21000 Variablen ist 50 Minuten auf meinem 5 Jahre alten Laptop. Ich möchte Aufgaben mit n=500 in erträglicher Zeit (< 1h) lösen können.

Ich freue mich über Tipps und Stichworte zum Weiter-Googlen und -Lernen. Namen und Beschreibungen von Algorithmen mit Pseudocode o.ä. sind mir lieber als fertige Lösungen in C.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS in Z/2Z: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 27.11.2011
Autor: wieschoo

Ich kenne das Krylow-Unterraum-Verfahren für allgemein dünnbesetzte Matrizen.

Für Google würde ich soetwas wie
- sparse integer matrices "Z/2Z"
- sparse integer matrices "mod 2"
- sparse integer matrices "GF(2)"
- binary sparse matrix solve

oder allgemein
- solve sparse matrices

vorschlagen. Meistens wird man im Englischen fündiger.

http://en.wikipedia.org/wiki/GMRES

Hat die Matrix noch eine Struktur (Bandmatrizen?)?

Bezug
                
Bezug
LGS in Z/2Z: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 So 27.11.2011
Autor: Rat62

Vielen Dank für die Hinweise. Werde ich wohl ein bisschen dazulernen (müssen).

> Hat die Matrix noch eine Struktur (Bandmatrizen?)?  

Danke für das gute Stichwort. Wahrscheinlich kann man die Variablen so umsortieren, dass ein 2n breites Band um die Diagonale entsteht, dann kann man den unteren rechten unabhängig vom oberen linken Teil lösen (evtl. sogar parallel) und dürfte in einem Bruchteil der Zeit fertig sein.

Da mach ich mich mal klüger. Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]