matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLGS, lösbarkeit, parameter.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - LGS, lösbarkeit, parameter.
LGS, lösbarkeit, parameter. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS, lösbarkeit, parameter.: Frage zur Lösbarkeit
Status: (Frage) beantwortet Status 
Datum: 01:47 Fr 05.08.2005
Autor: Towel-Man

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aloha an alle Mathe-Menschen hier!

Da ich bisl Faul im letzten semester war und Algebra n bisl vernachlässigt hab, vollgende frage!
gegeben sei das LGS
[mm] \pmat{ 2 & 5 & -1 & 4 \\ -6 & 1 & 3 & 2 \\ -4 & 6 & 3 & 6 \\ -16 & -8 & 8 & t}\vektor{ x1 \\ x2 \\ x3 \\ x4 } [/mm] = [mm] \vektor{-5 \\ 9 \\ 2 \\ s } [/mm]

gesucht: der Rang der erweiterterten Koeffizienten-Matrix (a,c) in abhängikeit von den beiden parametern t,s  [mm] \in \IR [/mm] !

des weiteren die Frage wann das LGS nicht lösbar ist und für welche Werte t und s, es eindeutig lösbar ist!

SO.. also ich hab schoma die erweiterte Matrix in die Form (elementare Umformung):

[mm] \pmat{ 2 & 5 &-1 & 4 & -5 \\ 0 & 16 & 0 & 14 & -6 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & (t+4) & (s-28) } [/mm]


gebracht. also trapezform. daraus geht doch nun hervor das wenn t= -4 und s = 28, der rang der Matrix = 3 sein muss oder? denn dann is die unterste reihe eine nullzeile. der Rang is dann kleiner als die spaltenzahl n was dazu führt das es keine eindeutige lösung gibt, sondern nur eine, von neuen parametern abhängige lösung.

Eindeutig lösbar wäre es dann wenn t ungleich -4 und s ungleich 28 wäre....also so wie ich das sehe ^^

wäre nett wenn jemand etwas dazu sagen könnte.

MfG


        
Bezug
LGS, lösbarkeit, parameter.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:38 Fr 05.08.2005
Autor: djmatey

Hi, also ich gehe mal davon aus, dass Du die Matrix korrekt in die Zeilenstufenform gebracht hast - das habe ich nicht extra nachgerechnet. Dann ist für t=-4 und s=28 das LGS nicht eindeutig lösbar; es existieren unendlich viele Lösungen. Der Rang der Matrix ist dann drei, das stimmt alles. Nicht lösbar ist das LGS für t=-4 und s [mm] \not=28, [/mm] denn dann steht da 0* [mm] x_{4} [/mm] = z mit [mm] z\not=0. [/mm]
Dass das LGS für [mm] t\not=-4 [/mm] und [mm] s\not=28 [/mm] eindeutig lösbar ist, stimmt so nicht ganz; s=28 ist erlaubt, nur [mm] t\not=-4 [/mm] ist wichtig. Für s=28 ist dann [mm] x_{4} [/mm] = 0. Der Rang der Matrix ist dann 4.
Beste Grüße, Matthias.

Bezug
                
Bezug
LGS, lösbarkeit, parameter.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Fr 05.08.2005
Autor: Towel-Man

Vielen dank für die Hilfe!

Konnte das soweit nun nachvollziehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]