matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS lösen ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - LGS lösen ?
LGS lösen ? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS lösen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 So 17.07.2016
Autor: Tabs2000

Aufgabe
Lösen Sie:

I.  x1 + x2 + x3 = 2
II. x1+u*x2+3x3=-1
III.x2+v*x3=0  

Bestimmen Sie abhängig von den Parameterwerten die Lösung des LGS und skizzieren Sie in der u,v-Ebene die Menge der Parameterwerte, für die das LGS keine Lösung besitzt.


mit den Parametern u,v.

Wie gehe ich am besten vor?

Ich habe jetzt so angefangen:

III.  x2 = -v*x3
in II eingesetzt ergibt das nach x1 umgestellt:

x1 = -1-x3*(-u*v+3)

Das dann in I eingesetzt:

1-x3*(u*v+3)-v*x3+x3 = 2
...
x3(-uv-2-v)=3
x3= 3/(-u*v-2-v)

Hm das sieht schon mal nicht so gut aus, weil wenn ich einen Bruch habe darf der Nenner ja nicht 0 werden...
Zur Skizze: Ich weiß, ich muss nach widersprüchen suchen, also Werten für u und v, für die das LGS nicht erfüllt sein kann... Vielleicht könnt ihr mir bei der Lösung etwas helfen?

LG und danke




        
Bezug
LGS lösen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 17.07.2016
Autor: abakus


> Lösen Sie:
>  
> I.  x1 + x2 + x3 = 2
> II. x1+u*x2+3x3=-1
>  III.x2+v*x3=0  
>
> Bestimmen Sie abhängig von den Parameterwerten die Lösung
> des LGS und skizzieren Sie in der u,v-Ebene die Menge der
> Parameterwerte, für die das LGS keine Lösung besitzt.
>  
>
> mit den Parametern u,v.
>  Wie gehe ich am besten vor?
>  
> Ich habe jetzt so angefangen:
>  
> III.  x2 = -v*x3
>  in II eingesetzt ergibt das nach x1 umgestellt:
>  
> x1 = -1-x3*(-u*v+3)
>  
> Das dann in I eingesetzt:
>  
> 1-x3*(u*v+3)-v*x3+x3 = 2
>  ...
>  x3(-uv-2-v)=3
>  x3= 3/(-u*v-2-v)
>  
> Hm das sieht schon mal nicht so gut aus, weil wenn ich
> einen Bruch habe darf der Nenner ja nicht 0 werden...

Na also! Das GS hat also keine Lösung, wenn
-u*v-2-v=0 gilt.
(Ich beziehe mich nur auf deine letzte Zeile, habe deine vorherigen Schritte nicht nachgerechnet.)

>  Zur Skizze: Ich weiß, ich muss nach widersprüchen
> suchen, also Werten für u und v, für die das LGS nicht
> erfüllt sein kann... Vielleicht könnt ihr mir bei der
> Lösung etwas helfen?
>  
> LG und danke
>  
>
>  


Bezug
        
Bezug
LGS lösen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 17.07.2016
Autor: Steffi21

Hallo, Du hast einen Vorzeichenfehler

[mm] x_1=-1-x_3(-uv+3) [/mm] ist so ok

in der Klammer steht -uv

einsetzen in (1) ergibt dann

[mm] -1-x_3(-uv+3)-vx_3+x_3=2 [/mm]

[mm] x_3=\bruch{3}{uv-v-2} [/mm]

analoge Schlussfolgerung

Steffi

Bezug
                
Bezug
LGS lösen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 17.07.2016
Autor: Tabs2000

Ok hm also muss ich schauen, wann der Nenner 0 wird.

Wenn ich u*v-v-2 = 0 löse, habe ich doch unendlich viele Möglichkeiten. Setze ich z.B. in der umgeformten Gleichung

v(u-1)=2  u=2, dann ist v=1 und so weiter...

Bezug
                        
Bezug
LGS lösen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 17.07.2016
Autor: Steffi21

Hallo, sicherlich gibt es unendliche viele Möglichkeiten, aber u=3 und v=1, jetzt bedenke den 2. Teil Deiner Aufgabenstellung

uv-v-2=0

uv-v=2

v(u-1)=2

[mm] v=\bruch{2}{u-1} [/mm]

nun das:

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
LGS lösen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 So 17.07.2016
Autor: Tabs2000

Perfekt, vielen lieben Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 16m 13. ChopSuey
UAnaR1FunkDiff/Inklusion stetig/diff.bar.
Status vor 3h 29m 4. Stefan92
UStoc/Splinefuntion
Status vor 1d 18h 20m 2. fred97
FunkAna/Teilräume von $L^p[0,1]$
Status vor 1d 23h 06m 1. Gooly
UStoc/Behandlung von Ausreißern
Status vor 2d 4. fred97
UAnaSon/Substitutuin, Partielle Integr
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]