matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabLGS lösen mit Matlab
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Matlab" - LGS lösen mit Matlab
LGS lösen mit Matlab < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS lösen mit Matlab: Hilfe, Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 20.10.2012
Autor: Mija

Aufgabe
Wir sollen folgende Funktionen in Matlab implementieren:
1. Eine Funktion function[x]=forwardSub(A,b), die die Vorwärtssubstitution darstellt mit A einer linken unteren Dreiecksmatrix.
2. Eine Funktion function[x]=backwardSub(A,b), die die Rückwärtssubstitution darstellt mit A einer rechten oberen Dreiecksmatrix.
3. Eine Funktion function[L,R,p] = LRZerl(A) für die LR-Zerlegung von A mit der Permutationsmatrix p.
4. Eine Funktion function [x] = sol(A,b) zum Lösen des LGS Ax=b nach x (Also das Zusammenbringen der ersten drei Funktionen in eine Funktion)


Nun habe ich das Problem, dass meine ersten drei Funktionen im Einzelnen alle funktionieren und das ausspucken, was sie sollen.

Jedoch habe ich nun Probleme meine vierte Funktion zu implementieren. Dort bekomme ich als c (durch die Vorwärtssubstitution) etwas falsches raus und das gleiche später mit x (bei der Rückwärtssubstitution) auch nochmal.

Wo ist mein Fehler?

Hier sind mal alle Funktionen:

1.
function[x] = forwardSub(A,b)
% das ist die Vorwaertssubstitution zur Loesung des linearen
% Gleichungssystems Ax=b
% A soll die Gestalt einer linkeren unteren Dreiecksmatrix haben

[m,n]=size(A);
s=length(b);

if m~=n
    error('Die Matrix A ist keine quadratische Matrix')
end

if ((s~=m) | (s~=n))
    error('Die Dimension der Matrix und die Dimension des Vektors stimmen nicht überein')
end

x=zeros(n,1);
x(1)=b(1)/A(1,1);

for j=2:n   % j-te Zeile
    summe=0;
    for k=1:j-1
        summe=summe+A(j,k)*x(k);
    end
    x(j)=(b(j)-summe)/A(j,j);
end
c=x

L=A;
save forwardSub

end


2.
function[x] = backwardSub(A,b)
% das ist die Rueckwaertssubstitution zur Loesung des linearen
% Gleichungssystems Ax=b
% A soll die Gestalt einer rechten oberen Dreiecksmatrix haben

c=b;

[m,n]=size(A);
s=length(c);

if m~=n
    error('Die Matrix A ist keine quadratische Matrix')
end

if ((s~=m) | (s~=n))
    error('Die Dimension der Matrix und die Dimension des Vektors stimmen nicht überein')
end

x=zeros(n,1);
x(n)=c(n)/A(n,n);

for j=n-1:-1:1   % j-te Zeile
    summe=0;
    for k=j+1:n
        summe=summe+A(j,k)*x(k);
    end
    x(j)=(c(j)-summe)/A(j,j);
end
x

R=A;
save backwardSub

end


3.
function [L,R,p] = LRZerl(A)

amax=max(max(abs(A)));
n=size(A,1);
eps=1e-14;
p=[1:n]';
for j=1:n-1
    absajj=abs(A(p(j),j));
    s=j;
% Elimination
    for i=j+1:n   % i-te Zeile
        if abs(A(p(i),j)>absajj)
            s=i;
            absajj=abs(A(p(i),j));
        end
    end
    if absajj<eps*amax
        fprintf(1,'Warnung: Matrix fast [mm] singulaer!\n'); [/mm]
    end
    ps=p(s);
    p(s)=p(j);
    p(j)=ps;
    ajj=A(p(j),j);
    for i=j+1:n   % i-te Zeile
        lij=A(p(i),j)/ajj;
        for k=j+1:n
            A(p(i),k)=A(p(i),k)-lij*A(p(j),k);
        end
    A(p(i),j)=lij;
    end
end
R=triu(A(p,:))
L=eye(n)+tril(A(p,:),-1)
p

save LRZerl

end


4.
function [x] = sol(A,b)

A=input('Eingabe von A: ');
b=input('Eingabe von b: ');

LRZerl(A);
load LRZerl p
b=b(p)
save sol
load sol b
forwardSub(A,b);
load forwardSub L c
save sol
load sol c
b=c;
backwardSub(A,b);

end


Hinweis: Ich habe als Beispiel immer die Matrix

$A = [mm] \pmat{ 2 & 4 & 1 \\ 1 & 2 & 4 \\ 4 & 1 & 2 }$ [/mm] und [mm] $b=\vektor{13 \\ 17 \\ 12}$ [/mm] verwendet.

Dort müssten rauskommen

[mm] $L=\pmat{ 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.25 & 0.5 & 1 }$, $R=\pmat{ 4 & 1 & 2 \\ 0 & 3.5 & 0 \\ 0 & 0 & 3.5}$, $p=\vektor{3 \\ 1 \\ 2}$, $c=\vektor{12 \\ 7 \\ 10.5}$, $x=\vektor{1 \\ 2 \\ 3}$ [/mm]


Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte.

        
Bezug
LGS lösen mit Matlab: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Sa 20.10.2012
Autor: MathePower

Hallo Mija,

> Wir sollen folgende Funktionen in Matlab implementieren:
>  1. Eine Funktion function[x]=forwardSub(A,b), die die
> Vorwärtssubstitution darstellt mit A einer linken unteren
> Dreiecksmatrix.
>  2. Eine Funktion function[x]=backwardSub(A,b), die die
> Rückwärtssubstitution darstellt mit A einer rechten
> oberen Dreiecksmatrix.
>  3. Eine Funktion function[L,R,p] = LRZerl(A) für die
> LR-Zerlegung von A mit der Permutationsmatrix p.
>  4. Eine Funktion function [x] = sol(A,b) zum Lösen des
> LGS Ax=b nach x (Also das Zusammenbringen der ersten drei
> Funktionen in eine Funktion)
>  Nun habe ich das Problem, dass meine ersten drei
> Funktionen im Einzelnen alle funktionieren und das
> ausspucken, was sie sollen.
>  
> Jedoch habe ich nun Probleme meine vierte Funktion zu
> implementieren. Dort bekomme ich als c (durch die
> Vorwärtssubstitution) etwas falsches raus und das gleiche
> später mit x (bei der Rückwärtssubstitution) auch
> nochmal.
>  
> Wo ist mein Fehler?
>  
> Hier sind mal alle Funktionen:
>  
> 1.
>  function[x] = forwardSub(A,b)
>  % das ist die Vorwaertssubstitution zur Loesung des
> linearen
>  % Gleichungssystems Ax=b
>  % A soll die Gestalt einer linkeren unteren Dreiecksmatrix
> haben
>  
> [m,n]=size(A);
>  s=length(b);
>  
> if m~=n
>      error('Die Matrix A ist keine quadratische Matrix')
>  end
>  
> if ((s~=m) | (s~=n))
>      error('Die Dimension der Matrix und die Dimension des
> Vektors stimmen nicht überein')
>  end
>  
> x=zeros(n,1);
>  x(1)=b(1)/A(1,1);
>  
> for j=2:n   % j-te Zeile
>      summe=0;
>      for k=1:j-1
>          summe=summe+A(j,k)*x(k);
>      end
>      x(j)=(b(j)-summe)/A(j,j);
>  end
>  c=x
>  
> L=A;
>  save forwardSub
>  
> end
>  
>
> 2.
> function[x] = backwardSub(A,b)
>  % das ist die Rueckwaertssubstitution zur Loesung des
> linearen
>  % Gleichungssystems Ax=b
>  % A soll die Gestalt einer rechten oberen Dreiecksmatrix
> haben
>  
> c=b;
>  
> [m,n]=size(A);
>  s=length(c);
>  
> if m~=n
>      error('Die Matrix A ist keine quadratische Matrix')
>  end
>  
> if ((s~=m) | (s~=n))
>      error('Die Dimension der Matrix und die Dimension des
> Vektors stimmen nicht überein')
>  end
>  
> x=zeros(n,1);
>  x(n)=c(n)/A(n,n);
>  
> for j=n-1:-1:1   % j-te Zeile
>      summe=0;
>      for k=j+1:n
>          summe=summe+A(j,k)*x(k);
>      end
>      x(j)=(c(j)-summe)/A(j,j);
>  end
>  x
>  
> R=A;
>  save backwardSub
>  
> end
>  
>
> 3.
> function [L,R,p] = LRZerl(A)
>  
> amax=max(max(abs(A)));
>  n=size(A,1);
>  eps=1e-14;
>  p=[1:n]';
>  for j=1:n-1
>      absajj=abs(A(p(j),j));
>      s=j;
>  % Elimination
>      for i=j+1:n   % i-te Zeile
>          if abs(A(p(i),j)>absajj)
>              s=i;
>              absajj=abs(A(p(i),j));
>          end
>      end
>      if absajj<eps*amax
>          fprintf(1,'Warnung: Matrix fast [mm]singulaer!\n');[/mm]
>      end
>      ps=p(s);
>      p(s)=p(j);
>      p(j)=ps;
>      ajj=A(p(j),j);
>      for i=j+1:n   % i-te Zeile
>          lij=A(p(i),j)/ajj;
>          for k=j+1:n
>              A(p(i),k)=A(p(i),k)-lij*A(p(j),k);
>          end
>      A(p(i),j)=lij;
>      end
>  end
>  R=triu(A(p,:))
>  L=eye(n)+tril(A(p,:),-1)
>  p
>  
> save LRZerl
>  
> end
>  
>
> 4.
> function [x] = sol(A,b)
>  
> A=input('Eingabe von A: ');
>  b=input('Eingabe von b: ');
>  
> LRZerl(A);
>  load LRZerl p


Nach diesem Befehl ist die Matrix L immer noch die Matrix A.


>  b=b(p)
>  save sol
>  load sol b
>  forwardSub(A,b);
>  load forwardSub L c
>  save sol
>  load sol c
>  b=c;
>  backwardSub(A,b);
>  
> end
>  
>
> Hinweis: Ich habe als Beispiel immer die Matrix
>  
> [mm]A = \pmat{ 2 & 4 & 1 \\ 1 & 2 & 4 \\ 4 & 1 & 2 }[/mm] und
> [mm]b=\vektor{13 \\ 17 \\ 12}[/mm] verwendet.
>  
> Dort müssten rauskommen
>  
> [mm]L=\pmat{ 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.25 & 0.5 & 1 }[/mm],
> [mm]R=\pmat{ 4 & 1 & 2 \\ 0 & 3.5 & 0 \\ 0 & 0 & 3.5}[/mm],
> [mm]p=\vektor{3 \\ 1 \\ 2}[/mm], [mm]c=\vektor{12 \\ 7 \\ 10.5}[/mm],
> [mm]x=\vektor{1 \\ 2 \\ 3}[/mm]
>  
>
> Ich würde mich sehr freuen, wenn mir jemand weiterhelfen
> könnte.


Gruss
MathePower

Bezug
                
Bezug
LGS lösen mit Matlab: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Sa 20.10.2012
Autor: Mija

Suuuper, vielen Dank für den Hinweis, es funktioniert jetzt alles, jippie!! :)

Bezug
        
Bezug
LGS lösen mit Matlab: Warum?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mo 22.10.2012
Autor: Loddar


> Gelöscht..

Und warum? Schöne Form von Egoismus! [motz]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]