matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLP Optimierung umformulieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - LP Optimierung umformulieren
LP Optimierung umformulieren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 24.07.2012
Autor: tc_engineer

Hallo!

Ich habe ein Optimierungsproblem der Form

$min\ [mm] ||x||_{l_1}$ [/mm]
$s.t.\ [mm] ||Ax-b||_{l_2}<\epsilon$ [/mm]

Mein Optimierungssolver in Matlab nimmt Problemstellungen der Form

$min\ [mm] ||x||_{l_1}$ [/mm]
$s.t.\ [mm] ||b-Ax||_{l_2}<\epsilon$ [/mm]

entgegen. Vom Ausgangsproblem $Ax=b$ her, welches gelöst werden soll, ist mir nicht klar, ob die Beschreibungen das gleiche ausdrücken (also zum gleichen Ergebnis kommen), da die Differenz, wenn anschließend mittels Norm der Betrag usw. gebildet wird, ja nicht mehr zwangsläufig gleich ist.

Außerdem kann ich es dem Solver so nicht vorsetzen, da der b und A als Parameter nimmt und die zweite Problemstellung anwendet. Gibt es einen Weg, das geeignet umzuformulieren, damit der Solver es schluckt?

Viele Grüße
tc_engineer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 24.07.2012
Autor: kamaleonti

Hallo,
> ist mir nicht klar, ob die Beschreibungen das
> gleiche ausdrücken (also zum gleichen Ergebnis kommen), da
> die Differenz, wenn anschließend mittels Norm der Betrag
> usw. gebildet wird, ja nicht mehr zwangsläufig gleich ist.

Ganz unabhängig von deinem Problem gilt für eine Norm [mm] \|\cdot\|:V\to\IR [/mm]

   [mm] \|\lambda x\|=|\lambda|\|x\|, \lambda\in\IK [/mm] und [mm] $x\in [/mm] V$.

Hierbei ist V der normierte Raum über dem Grundkörper [mm] \IK. [/mm]

Was bedeutet das für deine Fragestellung?

LG

Bezug
                
Bezug
LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Di 24.07.2012
Autor: tc_engineer

Ja, was bedeutet das für meine Fragestellung? Sag du es mir, ich sehe keinen Zusammenhang ;-).

Bezug
                        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Mi 25.07.2012
Autor: kamaleonti


> Ja, was bedeutet das für meine Fragestellung? Sag du es
> mir, ich sehe keinen Zusammenhang ;-).

Nicht den geringsten?

Du hast eine Norm und dein Frage lautet doch übertragen, ob

     [mm] \|Ax-b\|_{l_2}=\|b-Ax\|_{l_2} [/mm]

gilt. Nun streng dein Hirn mal an;-)

LG

Bezug
                                
Bezug
LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 25.07.2012
Autor: tc_engineer

Hmm, Hirn anstrengen, na mal sehen, sowas kann schief gehen ;-).

Wenn ich [mm] $\lambda=-1$ [/mm] nehme, könnte ich mittels deiner Regel $||Ax-b||$ evtl. umformen.

$|-1|\ ||Ax-b||=|-1|\ ||b-Ax||$
$||-Ax+b||=|-1|\ ||b-Ax||$
$||b-Ax||=1\ ||b-Ax||$

Die Richtung vielleicht?

Bin in der Beziehung eher Anwender und will ein Optimierungsproblem lösen, ohne mich zu sehr mit den mathematischen Frameworks dahinter rumzuschlagen.

Bezug
                                        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 25.07.2012
Autor: schachuzipus

Hallo tc_engineer,


> Hmm, Hirn anstrengen, na mal sehen, sowas kann schief gehen
> ;-).
>  
> Wenn ich [mm]\lambda=-1[/mm] nehme, [ok] könnte ich mittels deiner Regel
> [mm]||Ax-b||[/mm] evtl. umformen.
>  
> [mm]|-1|\ ||Ax-b||=|-1|\ ||b-Ax||[/mm]
>  [mm]||-Ax+b||=|-1|\ ||b-Ax||[/mm]
>  
> [mm]||b-Ax||=1\ ||b-Ax||[/mm]
>  
> Die Richtung vielleicht?

So in der Art, es sollte aber deutlich dastehen, dass [mm]||b-Ax||=||Ax-b||[/mm]

Geradeheraus als Vorschlag so:

[mm]||b-Ax||=||(-1)\cdot{}(Ax-b)||=|-1|\cdot{}||Ax-b||=||Ax-b||[/mm]

>  
> Bin in der Beziehung eher Anwender und will ein
> Optimierungsproblem lösen, ohne mich zu sehr mit den
> mathematischen Frameworks dahinter rumzuschlagen.

Gruß

schachuzipus


Bezug
                                                
Bezug
LP Optimierung umformulieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Mi 25.07.2012
Autor: tc_engineer

Gut, danke euch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]