matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLänge der log. Spirale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Länge der log. Spirale
Länge der log. Spirale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge der log. Spirale: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 03.12.2014
Autor: Bindl

Aufgabe
Für b>0 und R>0 sei die Kurve [mm] \gamma: [R^{2} [/mm] -> [mm] R^{2} [/mm] gegeben durch

[mm] \gamma(t) [/mm] = [mm] exp(-Rt)(cost,sint)^{T}, [/mm] t [mm] \in [/mm] [0,b].

Diese Kurve heißt logarithmische Spriale.
Berechnen Sie die Länge der Kurve [mm] \gamma. [/mm] Wie ist der Grenzwert der Länge für b -> [mm] \infty? [/mm]

Hi,
hier was ich bisher gamacht habe.

[mm] L(\gamma) [/mm] = [mm] \integral_{0}^{b}{II \gamma'(t) II_{2} dt} [/mm]
Das soll die Norm sein.

[mm] \gamma'(t) [/mm] = [mm] \begin{pmatrix} -e^{-Rt}*cost - e^{-Rt}*sint \\ -e^{-Rt}*sint + e^{-Rt}*cost \end{pmatrix} [/mm]

II [mm] \gamma'(t) II_{2} =\wurzel{(-e^{-Rt}*cost - e^{-Rt}*sint)^{2} + (-e^{-Rt}*sint + e^{-Rt}*cost)^{2}} [/mm] = [mm] \wurzel{(-e^{-Rt}*cost)^{2}-2*(-e^{-Rt}*cost*e^{-Rt}*sint)+(e^{-Rt}*sint)^{2} + (-e^{-Rt}*sint)^{2}-2*(-e^{-Rt}*cost*e^{-Rt}*sint)+(e^{-Rt}*cost)^{2}} [/mm] = [mm] \wurzel{2(e^{-Rt}*cost)^{2})+2(e^{-Rt}*sint)^{2}} [/mm] = [mm] \wurzel{2}*e^{-Rt}*\wurzel{cost^{2}+sint^{2}} [/mm] = [mm] \wurzel{2}*e^{-Rt} [/mm]

[mm] \integral_{0}^{b}{\wurzel{2}*e^{-Rt} dt} [/mm] = [mm] [-\wurzel{2}*e^{-Rt}]_{0}^{b} [/mm]

F(b) - F(0) = [mm] -\wurzel{2}*e^{-Rb} [/mm] - [mm] (-\wurzel{2}*e^{R*0}) [/mm] = [mm] -\wurzel{2}*e^{-Rb} [/mm] + [mm] \wurzel{2} [/mm]

[mm] \limes_{b\rightarrow\infty} -\wurzel{2}*e^{-Rb} [/mm] + [mm] \wurzel{2} [/mm] = [mm] \wurzel{2}, [/mm] da [mm] e^{-\infty}=0 [/mm]

Ist das korrekt?

        
Bezug
Länge der log. Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mi 03.12.2014
Autor: fred97


> Für b>0 und R>0 sei die Kurve [mm]\gamma: [R^{2}[/mm] -> [mm]R^{2}[/mm]
> gegeben durch
>  
> [mm]\gamma(t)[/mm] = [mm]exp(-Rt)(cost,sint)^{T},[/mm] t [mm]\in[/mm] [0,b].
>  
> Diese Kurve heißt logarithmische Spriale.
>  Berechnen Sie die Länge der Kurve [mm]\gamma.[/mm] Wie ist der
> Grenzwert der Länge für b -> [mm]\infty?[/mm]
>  Hi,
>  hier was ich bisher gamacht habe.
>  
> [mm]L(\gamma)[/mm] = [mm]\integral_{0}^{b}{II \gamma'(t) II_{2} dt}[/mm]
>  Das
> soll die Norm sein.
>  
> [mm]\gamma'(t)[/mm] = [mm]\begin{pmatrix} -e^{-Rt}*cost - e^{-Rt}*sint \\ -e^{-Rt}*sint + e^{-Rt}*cost \end{pmatrix}[/mm]

Wie schon gestern (oder vorgestern ?) ignorierst Du die Kettenregel !

Es ist:

[mm]\gamma'(t)[/mm] = [mm]\begin{pmatrix} -Re^{-Rt}*cost - e^{-Rt}*sint \\ -Re^{-Rt}*sint + e^{-Rt}*cost \end{pmatrix}[/mm]

Jetzt kannst Du mit der Rechnerei von vorne beginnen ... Oder vielleicht doch nicht ?

Fasse [mm] \gamma [/mm] komplex auf:

   [mm] \gamma(t)=e^{(i-R)t} [/mm]

dann ist [mm] \gamma'(t)=(i-R)e^{(i-R)t}. [/mm]

Daraus folgt sofort:

    [mm] ||\gamma'(t)||=|i-R|*|e^{it}|*e^{-Rt}=\wurzel{R^2+1}*e^{-Rt}. [/mm]


FRED

>  
> II [mm]\gamma'(t) II_{2} =\wurzel{(-e^{-Rt}*cost - e^{-Rt}*sint)^{2} + (-e^{-Rt}*sint + e^{-Rt}*cost)^{2}}[/mm]
> =
> [mm]\wurzel{(-e^{-Rt}*cost)^{2}-2*(-e^{-Rt}*cost*e^{-Rt}*sint)+(e^{-Rt}*sint)^{2} + (-e^{-Rt}*sint)^{2}-2*(-e^{-Rt}*cost*e^{-Rt}*sint)+(e^{-Rt}*cost)^{2}}[/mm]
> = [mm]\wurzel{2(e^{-Rt}*cost)^{2})+2(e^{-Rt}*sint)^{2}}[/mm] =
> [mm]\wurzel{2}*e^{-Rt}*\wurzel{cost^{2}+sint^{2}}[/mm] =
> [mm]\wurzel{2}*e^{-Rt}[/mm]
>  
> [mm]\integral_{0}^{b}{\wurzel{2}*e^{-Rt} dt}[/mm] =
> [mm][-\wurzel{2}*e^{-Rt}]_{0}^{b}[/mm]
>  
> F(b) - F(0) = [mm]-\wurzel{2}*e^{-Rb}[/mm] - [mm](-\wurzel{2}*e^{R*0})[/mm] =
> [mm]-\wurzel{2}*e^{-Rb}[/mm] + [mm]\wurzel{2}[/mm]
>  
> [mm]\limes_{b\rightarrow\infty} -\wurzel{2}*e^{-Rb}[/mm] +
> [mm]\wurzel{2}[/mm] = [mm]\wurzel{2},[/mm] da [mm]e^{-\infty}=0[/mm]
>  
> Ist das korrekt?


Bezug
                
Bezug
Länge der log. Spirale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 03.12.2014
Autor: Bindl

Hi,

dann mach ich mit dem Integral weiter:

[mm] \integral_{0}^{b}{\wurzel{R^{2}+1}*e^{-Rt} dt} [/mm] = [mm] [-R\wurzel{R^{2}+1}*e^{-Rt}]_{0}^{b} [/mm] = [mm] -R\wurzel{R^{2}+1}*e^{-Rb} [/mm] + [mm] R\wurzel{R^{2}+1} [/mm]

[mm] \limes_{b\rightarrow\infty} -R\wurzel{R^{2}+1}*e^{-Rb} [/mm] + [mm] R\wurzel{R^{2}+1} [/mm] = [mm] R\wurzel{R^{2}+1} [/mm]

Ist das jetzt richtig?

Bezug
                        
Bezug
Länge der log. Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mi 03.12.2014
Autor: fred97


> Hi,
>  
> dann mach ich mit dem Integral weiter:
>  
> [mm]\integral_{0}^{b}{\wurzel{R^{2}+1}*e^{-Rt} dt}[/mm] =
> [mm][-R\wurzel{R^{2}+1}*e^{-Rt}]_{0}^{b}[/mm] =
> [mm]-R\wurzel{R^{2}+1}*e^{-Rb}[/mm] + [mm]R\wurzel{R^{2}+1}[/mm]
>  
> [mm]\limes_{b\rightarrow\infty} -R\wurzel{R^{2}+1}*e^{-Rb}[/mm] +
> [mm]R\wurzel{R^{2}+1}[/mm] = [mm]R\wurzel{R^{2}+1}[/mm]
>  
> Ist das jetzt richtig?

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]