matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Länge einer Kurve berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Länge einer Kurve berechnen
Länge einer Kurve berechnen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Kurve berechnen: wie substituieren?
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 20.09.2011
Autor: TheBozz-mismo

Aufgabe
Berechnen Sie die Länge der Kurve [mm] x:[0,3]->R^3, [/mm] wobei x(t)=(cos(2t),sin(2t),2*cosh(t))

Hallo!
Ich habe zuerst die erste ableitung bestimmt.
x'(t)=(-2sin(2t),cos(2t)*2,2sinh(t))
Dann die Norm von x'(t)
[mm] \parallel [/mm] x'(t) [mm] \parallel=\wurzel{4+4sinh(t)} [/mm]
Für die Länge muss ich folgendes Integral bestimmen:
[mm] 2*\integral_{0}^{3}{\wurzel{ 1+sinh(t) }dt} [/mm]

Nun bin ich etwas ratlos, wie ich das Integral lösen kann.
Eigentlich kann man hier nur substituieren, oder?

Ich hab mir überlegt, sinh(t) mit exp zu schreiben, also
[mm] 2*\integral_{0}^{3}{\wurzel{\bruch{2+e^t-e^{-t}}{2} }dt} [/mm]

Kann mir einer ein Tipp geben?

Vielen Dank schonmal

TheBozz-mismo

        
Bezug
Länge einer Kurve berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Di 20.09.2011
Autor: Al-Chwarizmi


> Berechnen Sie die Länge der Kurve [mm]x:[0,3]->R^3,[/mm] wobei
> x(t)=(cos(2t),sin(2t),2*cosh(t))

>  Ich habe zuerst die erste ableitung bestimmt.

>  x'(t)=(-2sin(2t),cos(2t)*2,2sinh(t)) [ok]

>  Dann die Norm von x'(t)
>  [mm]\parallel[/mm] x'(t) [mm]\parallel=\wurzel{4+4sinh(t)}[/mm]    [notok]

da hast du fälschlicherweise den sinh(t) nicht quadriert !

>  Für die Länge muss ich folgendes Integral bestimmen:
>  [mm]2*\integral_{0}^{3}{\wurzel{ 1+sinh(t) }dt}[/mm]    [notok]

Mit dem richtigen Integranden geht alles ganz prima !

LG   Al-Chw.

Bezug
                
Bezug
Länge einer Kurve berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Di 20.09.2011
Autor: TheBozz-mismo

Ah. Stimmt. Vielen Dank für den Hinweis.

Also neuer Versuch
$ [mm] \integral_{0}^{3}{\wurzel{ 4+4*(\bruch{e^t-e^-t}{2})^2 }dt} [/mm] $
[mm] =\integral_{0}^{3} {\wurzel{4+(e^t-e^-t)^2} dt } [/mm]
[mm] =\integral_{0}^{3} {\wurzel{e^{2t}+2+e^{-2t}} dt } [/mm]
[mm] =\integral_{0}^{3} {\wurzel{(e^{t}+e^{-t})^2} dt } [/mm]
[mm] =[e^t-e^{-t}]_{0}^{3}=e^3-e^{-3}=2*sinh(3) [/mm]

Ich hoffe mal, das ist jetzt richtig.
Vielen Dank nochmal
TheBozz-mismo


Bezug
                        
Bezug
Länge einer Kurve berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 20.09.2011
Autor: schachuzipus

Hallo TheBozz-mismo,


> Ah. Stimmt. Vielen Dank für den Hinweis.
>  
> Also neuer Versuch
>  [mm]\integral_{0}^{3}{\wurzel{ 4+4*(\bruch{e^t-e^-t}{2})^2 }dt}[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{4+(e^t-e^-t)^2} dt }[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{e^{2t}+2+e^{-2t}} dt }[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{(e^{t}+e^{-t})^2} dt }[/mm]
>  
> [mm]=[e^t-e^{-t}]_{0}^{3}=e^3-e^{-3}=2*sinh(3)[/mm] [ok]
>  
> Ich hoffe mal, das ist jetzt richtig.

Das sieht gut aus!

>  Vielen Dank nochmal
>  TheBozz-mismo
>  

Gruß
schachuzipus


Bezug
                        
Bezug
Länge einer Kurve berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Di 20.09.2011
Autor: Al-Chwarizmi


> Ah. Stimmt. Vielen Dank für den Hinweis.
>  
> Also neuer Versuch
>  [mm]\integral_{0}^{3}{\wurzel{ 4+4*(\bruch{e^t-e^-t}{2})^2 }dt}[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{4+(e^t-e^-t)^2} dt }[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{e^{2t}+2+e^{-2t}} dt }[/mm]
>  
> [mm]=\integral_{0}^{3} {\wurzel{(e^{t}+e^{-t})^2} dt }[/mm]
>  
> [mm]=[e^t-e^{-t}]_{0}^{3}=e^3-e^{-3}=2*sinh(3)[/mm]
>  
> Ich hoffe mal, das ist jetzt richtig.
>  Vielen Dank nochmal
>  TheBozz-mismo


Das ginge auch gut mit der Gleichung  [mm] 1+sinh^2=cosh^2 [/mm] und mit
den angenehmen Eigenschaften von sinh und cosh beim Ableiten
und Integrieren.
(sinh und cosh haben analoge Eigenschaften wie sin und cos,
nur mit anderen Vorzeichen in den Formeln)

LG   Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]