matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLage Körper im Raum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Lage Körper im Raum
Lage Körper im Raum < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage Körper im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 13.10.2022
Autor: jasmin89

Aufgabe
Die Lage eines rechteckiger Körpers wird mit drei Punkten vermessen. Es soll der Abstand A zum Bezugskoordinatensystem ermittelt werden (Bezugskoordinatensystem liegt im Ursprung der Koordinatenachse). Siehe Bild [Dateianhang nicht öffentlich].

$$
[mm] \begin{array}{l|lll} p & 1 & 2 & 3 \\ \hline x & 4 & 9 & 1 \\ y & 2 & 4 & 4 \end{array} [/mm]
$$
Wobei die Abmessung des Rechteckes a=5 b=10 ist







Hallo, folgende Frage habe ich zu einer mündlichen Prüfung erhalten. Natürlich konnte ich die Frage nicht auf anhieb lösen. Habe von meinem Professor folgende Lösung erhalten.

Zuerst wird ein Verbindungsvektor von Punkt P1 nach P2 berechnet.

$$
[mm] u=P_2-P_1=\left(\begin{array}{l} 9 \\ 4 \end{array}\right)-\left(\begin{array}{l} 4 \\ 2 \end{array}\right)=\left(\begin{array}{l} 5 \\ 2 \end{array}\right) [/mm]
$$

Dann wird ein Richtungsvektor daraus gemacht:

$$
[mm] \hat{u}=\frac{\left(\begin{array}{l} 5 \\ 2 \end{array}\right)}{\sqrt{5^2+2^2}}=\left(\begin{array}{l} 51 \sqrt{29} \\ 51 \sqrt{29} \end{array}\right)=\left(\begin{array}{c} 0,93 \\ 0,377 \end{array}\right) [/mm]
$$


Nun muss man das Lot vom Punkt P3 auf den Richtungsvektur u fällen, und den Punkt P1 aufaddieren:

[mm] A=\left(\left(P_3-P_1\right) \cdot \hat{u}\right) \cdot \hat{u}+P_1 [/mm]

[mm] A=\left.\left.(\left(\begin{array}{l} 1-4 \\ 4-2 \end{array}\right) \cdot\left(\begin{array}{l} 0,93 \\ 0,37 \end{array}\right)\right) \cdot\left(\begin{array}{l} 0,93 \\ 0,37 \end{array}\right)\right)+\left(\begin{array}{l} 4 \\ 2 \end{array}\right)=\left(\begin{array}{l} 2,1 \\ 1,25 \end{array}\right) [/mm]

Wobei man die Subtraktion von P3-P1 (P3'=P3-P1) wie folgt auffassen kann: Man verschiebt die Gerade so als würde der Bezugspunkt P1 im Ursprung liegen, siehe Foto.

Ich verstehe hier nicht wieso man P3' so aufassen kann dass dieser im Ursprung liegt. Stimmt das überhaupt?




Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Lage Körper im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Fr 14.10.2022
Autor: HJKweseleit


> Die Lage eines rechteckiger Körpers wird mit drei Punkten
> vermessen.

Ein Körper ist dreidimensional. Hier wird immer nur mit 2 Dimensionen gerechnet. Ich vermute daher, dass der "Körper" ein Rechteck, also eine Fläche ist. Daher ist auch die dritte Koordinatenachse überflüssig.
Dem Bild nach zu urteilen wird aber der Körper nicht durch die drei Punkte vermessen, sondern sie liegen auf den entsprechenden Seiten im Bild. Was nicht angegeben ist: Ist [mm] P_2 [/mm] der Eckpunkt oder liegt er nur irgendwo auf der Seite des Rechtecks? Ich vermute letzteres, sonst wäre die Aufgabe leichter zu lösen.

> Es soll der Abstand A zum
> Bezugskoordinatensystem ermittelt werden
> (Bezugskoordinatensystem liegt im Ursprung der
> Koordinatenachse). Siehe Bild [Dateianhang nicht öffentlich].
>
> [mm][/mm]
>  [mm]\begin{array}{l|lll} p & 1 & 2 & 3 \\ \hline x & 4 & 9 & 1 \\ y & 2 & 4 & 4 \end{array}[/mm]
> [mm][/mm]
>  
> Wobei die Abmessung des Rechteckes a=5 b=10 ist
>  
>

Wenn [mm] P_2 [/mm] der Eckpunkt ist, muss man von dort aus nur 10 Einheiten in Richtung [mm] P_1 [/mm] gehen, und schon ist man bei A.

>
>
>
>
> Hallo, folgende Frage habe ich zu einer mündlichen
> Prüfung erhalten. Natürlich konnte ich die Frage nicht
> auf anhieb lösen. Habe von meinem Professor folgende
> Lösung erhalten.
>  
> Zuerst wird ein Verbindungsvektor von Punkt P1 nach P2
> berechnet.
>
> [mm][/mm]
>  [mm]u=P_2-P_1=\left(\begin{array}{l} 9 \\ 4 \end{array}\right)-\left(\begin{array}{l} 4 \\ 2 \end{array}\right)=\left(\begin{array}{l} 5 \\ 2 \end{array}\right)[/mm]
> [mm][/mm]
>  
> Dann wird ein Richtungsvektor daraus gemacht:

Nein, das ist schon ein Richtungsvektor. Er wird normiert, d.h. auf die Länge 1 gebracht.

>
> [mm][/mm]
>  [mm]\hat{u}=\frac{\left(\begin{array}{l} 5 \\ 2 \end{array}\right)}{\sqrt{5^2+2^2}}=\left(\begin{array}{l} 51 \sqrt{29} \\ 51 \sqrt{29} \end{array}\right)=\left(\begin{array}{c} 0,93 \\ 0,377 \end{array}\right)[/mm]
> [mm][/mm]
>  

Du meinst nicht [mm] \vektor{51 \sqrt{29} \\ 51 \sqrt{29}}, [/mm] sondern [mm] \vektor{5/\sqrt{29} \\ 2/\sqrt{29}}. [/mm]


>
> Nun muss man das Lot vom Punkt P3 auf den Richtungsvektur u
> fällen, und den Punkt P1 aufaddieren:
>  
> [mm]A=\left(\left(P_3-P_1\right) \cdot \hat{u}\right) \cdot \hat{u}+P_1[/mm]
>  
> [mm]A=\left.\left.(\left(\begin{array}{l} 1-4 \\ 4-2 \end{array}\right) \cdot\left(\begin{array}{l} 0,93 \\ 0,37 \end{array}\right)\right) \cdot\left(\begin{array}{l} 0,93 \\ 0,37 \end{array}\right)\right)+\left(\begin{array}{l} 4 \\ 2 \end{array}\right)=\left(\begin{array}{l} 2,1 \\ 1,25 \end{array}\right)[/mm]
>  
> Wobei man die Subtraktion von P3-P1 (P3'=P3-P1) wie folgt
> auffassen kann: Man verschiebt die Gerade so als würde der
> Bezugspunkt P1 im Ursprung liegen, siehe Foto.
>  
> Ich verstehe hier nicht wieso man P3' so aufassen kann dass
> dieser im Ursprung liegt. Stimmt das überhaupt?
>  


[Dateianhang nicht öffentlich]

Wie kommt man zu der Formel für A?

Zunächst mal stellt man für die Gerade g durch [mm] P_1 [/mm] und [mm] P_2 [/mm] eine Geradengleichung auf:

g: [mm] x=P_1+k*u [/mm]  (Vektorpfeile habe ich - auch in der Zeichnung - weggelassen, da du das auch machst). u kürzen (oder verlängern) wir vorher auf die Länge 1.

Dabei ist x jetzt ein Vektor, der vom Ursprung aus auf einen beliebigen Punkt auf g zeigt, wenn man k passend wählt (verschiedene grüne Vektoren zu verschiedenen k). Zu jedem k [mm] \in \IR [/mm] gibt es genau einen Punkt auf g und umgekehrt.

Dann geben wir alle Pfeile an, die von [mm] P_3 [/mm]  irgendwo auf g führen (rote Vektoren). Sie alle lassen sich als [mm] x-P_3 [/mm] schreiben, also
[mm] P_1+ku-P_3. [/mm]

Einer davon steht senkrecht auf g. Er muss also, mit u multipliziert, 0 ergeben:
[mm] (P_1+ku-P_3)u=P_1u+ku^2-P_3u=0 [/mm]

Da u normiert wurde, ist [mm] u^2=1: [/mm]

P_1u+k-P_3u=0  und damit [mm] k=P_3u-P_1u=(P_3-P_1)u [/mm]

Dieses k, in g wieder eingesetzt, führt dann auf A:

[mm] A=P_1+(((P_3-P_1)u)u [/mm]






Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]