matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLage von Punkten in Ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Lage von Punkten in Ebene
Lage von Punkten in Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage von Punkten in Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 14.05.2008
Autor: MatheNietchen

Hallo!
Wie bekomme ich raus, wann und ob ein Punkt im Paralelleogramm liegt, und wann im Dreieck ABC?
Dazu wie bestimme ich den Abstand von 2 Punkten?

Wie kann ich durch 2 Punkten eine Geradengleichung aufstellen?

        
Bezug
Lage von Punkten in Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Mi 14.05.2008
Autor: Tyskie84

Hi,

Vielleicht wäre es einfacher wenn du mal deine komplette Aufgabenstellung hier aufschreibst dann können wir dir besser helfen.

Zu deiner letzten Frage:

Die allgemeine Geradengleichung lautet ja:

[mm] \vec{x}=\vec{p}+t\cdot\vec{u} [/mm] darin ist [mm] \vec{p} [/mm] der [mm] \red{Stuetzvektor} [/mm] und [mm] \vec{u} [/mm] ist der [mm] \red{Richtungsvektor} [/mm]

Nehmen wir nun wir haben wir haben 2 Punkte gegeben. [mm] A(a_{1}|a_{2}|a_{3}) [/mm] und [mm] B(b_{1}|b_{2}|b_{3}). [/mm] Nun soll der Punkt A auf der Geraden liegen und damit können wir den Punkt A als [mm] \red{Stuetzvektor} [/mm] wählen denn jeder Ortsvektor eines Punktes ist ein möglicher Stützvektor. Nun braicht die Gerade ja noch eine Richtung. Dies erreichen wir indem viw uns den Vektor [mm] \overrightarrow{AB} [/mm] betrahten denn beide Punkte sollen ja auf der Geraden liegen. Damit ist unser Richtungsvektor [mm] \vektor{b_{1}-a_{1} \\ b_{2}-a_{2} \\ b_{3}-a_{3}}. [/mm] Damit lautet die Geradengleichung:
[mm] \vec{x}=\vektor{a_{1} \\ a_{2} \\ a_{3}}+t\cdot\vektor{b_{1}-a_{1} \\ b_{2}-a_{2} \\ b_{3}-a_{3}}. [/mm]

Zu deinen ersten Fragen kann ich folgendes sagen. Ein Parallelogramm oder auch ein Dreieck ist ja nichts anderes als eine Ebene. Sofern du dann diese Flächen als Ebenengleichung angegeben hast musst du einfach den Punkt mit der Ebenegleichung gleichsetzen. Wenn das zugehörige LGS dann eine eindeutige Lösung hat dann liegt der Punkt auf der Ebene und somit in dem Parallelogramm bzw. Dreick.

[hut] Gruß

Bezug
                
Bezug
Lage von Punkten in Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Mi 14.05.2008
Autor: statler

Hi!

> Zu deinen ersten Fragen kann ich folgendes sagen. Ein
> Parallelogramm oder auch ein Dreieck ist ja nichts anderes
> als eine Ebene.

Das kann man so nicht sagen, ein 3eck hat zum Beispiel einen Inhalt, die ganze Ebene nicht.

> Sofern du dann diese Flächen als
> Ebenengleichung angegeben hast musst du einfach den Punkt
> mit der Ebenegleichung gleichsetzen. Wenn das zugehörige
> LGS dann eine eindeutige Lösung hat dann liegt der Punkt
> auf der Ebene und somit in dem Parallelogramm bzw. Dreick.

Gemeint ist vermutlich: Welche Punkte der Ebene, die durch das 3eck definiert ist, liegen innerhalb des 3ecks?

Wenn ABC das 3eck ist und [mm] \overrightarrow{0A} [/mm] + [mm] \lambda\*\overrightarrow{AB} [/mm] + [mm] \mu\*\overrightarrow{AC} [/mm] die Ebene, dann ergibt sich eine Bedingung an die Parameter. Dtto bei Parallelogramm.

Gruß aus HH-Harburg
Dieter


Bezug
                        
Bezug
Lage von Punkten in Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Mi 14.05.2008
Autor: Tyskie84

Hi Dieter,

ja du hast Recht ich hab mich da etwas unglücklich ausgedrückt. Ein Dreieck hat ja drei Punkte diese sollte man dann bestimmen und daraus dann die Ebenengl. konstruieren. Den Punkt mit der Ebene gleichsetzen und dann weiss man ob der Punkt in der Ebene (im Dreieck) liegt. Diese Vorgehensweise ist doch richtig oder übersehe ich da noch was?

[hut] Gruß

Bezug
                                
Bezug
Lage von Punkten in Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mi 14.05.2008
Autor: statler

Hi!

> ja du hast Recht ich hab mich da etwas unglücklich
> ausgedrückt. Ein Dreieck hat ja drei Punkte diese sollte
> man dann bestimmen und daraus dann die Ebenengl.
> konstruieren. Den Punkt mit der Ebene gleichsetzen und dann
> weiss man ob der Punkt in der Ebene (im Dreieck) liegt.
> Diese Vorgehensweise ist doch richtig oder übersehe ich da
> noch was?

Ich glaube ja. Ein 3eck/Parallelogramm teilt die Ebene in ein Innen und ein Außen, und bei der Frage geht es darum, ob der Punkt im Innenbereich liegt.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]