matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLage zweier Geraden zueinander
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Lage zweier Geraden zueinander
Lage zweier Geraden zueinander < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage zweier Geraden zueinander: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Do 24.03.2011
Autor: dreamweaver

Aufgabe
Eine Gerade im [mm] \IR^{3} [/mm] verlaufe vom Ursprung zum Punkt $P$. Eine zweite Gerade sei durch einen Punkt $Q$ und einen Richtungsvektor [mm] \vec{v} [/mm] festgelegt. Untersuchen Sie die Lage der Geraden zueinander, d. h. bestimmen Sie jeweils die Schnittmenge:
a) P = (1, 1, 1)    Q = (9, 1, 3)  [mm] \vec{v} [/mm] = (-1, 3, [mm] 2)^{T} [/mm]
b) P = (3, -1, 5)    Q = (3, 1, -4)  [mm] \vec{v} [/mm] = (2, -1, [mm] 5)^{T} [/mm]

Hinweis: Zwei Geraden können gleich sein, parallel sein, windschief sein oder sich in einem Punkt schneiden.

Hallo, ich bitte wieder mal um eure Hilfe.

[mm] \vec{v} [/mm] = (-1, 3, [mm] 2)^{T} [/mm] ist doch dasselbe wie [mm] \vec{v} [/mm] = (-1 3 2) oder?

[mm] \vec{p} [/mm] = [mm] s\vektor{1 \\ 1 \\ 1} [/mm]
[mm] \vec{q} [/mm] = [mm] \vektor{9 \\ 1 \\ 3} [/mm] + t (-1 3 2)

s,t [mm] \in \IR [/mm]

Um nun einen Schnittpunkt zu finden setze ich [mm] \vec{p} [/mm] = [mm] \vec{q}: [/mm]

[mm] s\vektor{1 \\ 1 \\ 1} [/mm] = [mm] \vektor{9 \\ 1 \\ 3} [/mm] + t (-1 3 2)
[mm] s\vektor{1 \\ 1 \\ 1} [/mm] + t (1 -3 -2) = [mm] \vektor{9 \\ 1 \\ 3} [/mm]
[mm] s\vektor{1 \\ 1 \\ 1} [/mm] + t [mm] \pmat{ 0 & 0 & 0 \\ 1 & -3 & -2 \\ 0 & 0 & 0} [/mm] = [mm] \vektor{9 \\ 1 \\ 3} [/mm]

Stimmt das soweit?

Lg



        
Bezug
Lage zweier Geraden zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 24.03.2011
Autor: MathePower

Hallo dreamweaver,

> Eine Gerade im [mm]\IR^{3}[/mm] verlaufe vom Ursprung zum Punkt [mm]P[/mm].
> Eine zweite Gerade sei durch einen Punkt [mm]Q[/mm] und einen
> Richtungsvektor [mm]\vec{v}[/mm] festgelegt. Untersuchen Sie die
> Lage der Geraden zueinander, d. h. bestimmen Sie jeweils
> die Schnittmenge:
>  a) P = (1, 1, 1)    Q = (9, 1, 3)  [mm]\vec{v}[/mm] = (-1, 3,
> [mm]2)^{T}[/mm]
>  b) P = (3, -1, 5)    Q = (3, 1, -4)  [mm]\vec{v}[/mm] = (2, -1,
> [mm]5)^{T}[/mm]
>  
> Hinweis: Zwei Geraden können gleich sein, parallel sein,
> windschief sein oder sich in einem Punkt schneiden.
>  Hallo, ich bitte wieder mal um eure Hilfe.
>  
> [mm]\vec{v}[/mm] = (-1, 3, [mm]2)^{T}[/mm] ist doch dasselbe wie [mm]\vec{v}[/mm] =
> (-1 3 2) oder?


Nein.

[mm]\vec{v} = (-1, 3, 2)^{T}=\pmat{-1 \\ 3 \\ 2}[/mm]


>  
> [mm]\vec{p}[/mm] = [mm]s\vektor{1 \\ 1 \\ 1}[/mm]
>  [mm]\vec{q}[/mm] = [mm]\vektor{9 \\ 1 \\ 3}[/mm]
> + t (-1 3 2)
>  
> s,t [mm]\in \IR[/mm]
>  
> Um nun einen Schnittpunkt zu finden setze ich [mm]\vec{p}[/mm] =
> [mm]\vec{q}:[/mm]
>  
> [mm]s\vektor{1 \\ 1 \\ 1}[/mm] = [mm]\vektor{9 \\ 1 \\ 3}[/mm] + t (-1 3 2)


Das ist doch einfach:

[mm]s\vektor{1 \\ 1 \\ 1} = \vektor{9 \\ 1 \\ 3} + t \pmat{-1 \\ 3 \\ 2}[/mm]


>  [mm]s\vektor{1 \\ 1 \\ 1}[/mm] + t (1 -3 -2) = [mm]\vektor{9 \\ 1 \\ 3}[/mm]
>  
> [mm]s\vektor{1 \\ 1 \\ 1}[/mm] + t [mm]\pmat{ 0 & 0 & 0 \\ 1 & -3 & -2 \\ 0 & 0 & 0}[/mm]
> = [mm]\vektor{9 \\ 1 \\ 3}[/mm]



>  
> Stimmt das soweit?
>  
> Lg
>  
>  


Gruss
MathePower

Bezug
                
Bezug
Lage zweier Geraden zueinander: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Do 24.03.2011
Autor: dreamweaver

Aja stimmt, zu blöd -.-...

Dann hab ich 2 Gleichungen mit 2 Unbekannten, für $t$ krieg ich 2 raus und für $s$ = 7.
Also liegt der Schnittpunkt der Geraden bei [mm] \vektor{7 \\ 7 \\ 7}. [/mm]

Bei Aufgabe b schneiden sich die Geraden nicht, können also nur parallel oder windschief sein. Da die Geraden aber nicht in dieselbe Richtung zeigen [mm] \vec{p} [/mm] != [mm] \vec{v} [/mm] müssen die Geraden windschief zueinander stehen.

Stimmt das?

Lg

Bezug
                        
Bezug
Lage zweier Geraden zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Do 24.03.2011
Autor: fred97


> Aja stimmt, zu blöd -.-...
>  
> Dann hab ich 2 Gleichungen mit 2 Unbekannten, für [mm]t[/mm] krieg
> ich 2 raus und für [mm]s[/mm] = 7.
>  Also liegt der Schnittpunkt der Geraden bei [mm]\vektor{7 \\ 7 \\ 7}.[/mm]
>  
> Bei Aufgabe b schneiden sich die Geraden nicht, können
> also nur parallel oder windschief sein. Da die Geraden aber
> nicht in dieselbe Richtung zeigen [mm]\vec{p}[/mm] != [mm]\vec{v}[/mm]
> müssen die Geraden windschief zueinander stehen.
>  
> Stimmt das?

Ja

FRED

>  
> Lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]