matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange Multiplikatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange Multiplikatoren
Lagrange Multiplikatoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Multiplikatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Sa 12.07.2008
Autor: Pidgin

Wir haben in der Vorlesung die Nebenbedingung g: [mm] $U\rightarrow \mathds{R}$ [/mm]  der Funktion $f: [mm] U\rightarrow \mathds{R}$ [/mm] wie folgt definiert mit kompakter Teilmenge [mm] A\subset [/mm] U:
g(x) = 0 für [mm] x\in \partial [/mm] A
g(x)>0   für [mm] x\in A^{\circ} [/mm]
g(x)<0   für [mm] x\in U\setminus [/mm] A

Meine Frage: Ich betrachte nun die Funktion f(x,y,z)  mit der Nebenbedingung [mm] x^2+y^2+z^2=1. [/mm] Wie bestimme ich jetzt mein g(x,y,z)?
In der Lösung ist die Funktion g(x,y,z)= [mm] x^2+y^2+z^2-1 [/mm] so aufgelöst worden, aber das widerspricht doch dem Satz aus der Vorlesung (siehe oben) oder?


        
Bezug
Lagrange Multiplikatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Sa 12.07.2008
Autor: angela.h.b.


> Wir haben in der Vorlesung die Nebenbedingung g:
> [mm]U\rightarrow \mathds{R}[/mm]  der Funktion [mm]f: U\rightarrow \mathds{R}[/mm]
> wie folgt definiert mit kompakter Teilmenge [mm]A\subset[/mm] U:
>  g(x) = 0 für [mm]x\in \partial[/mm] A
>  g(x)>0   für [mm]x\in A^{\circ}[/mm]
>  g(x)<0   für [mm]x\in U\setminus[/mm]
> A
>  
> Meine Frage: Ich betrachte nun die Funktion f(x,y,z)  mit
> der Nebenbedingung [mm]x^2+y^2+z^2=1.[/mm] Wie bestimme ich jetzt
> mein g(x,y,z)?
>  In der Lösung ist die Funktion g(x,y,z)= [mm]x^2+y^2+z^2-1[/mm] so
> aufgelöst worden, aber das widerspricht doch dem Satz aus
> der Vorlesung (siehe oben) oder?
>  

Hallo,

ich hoffe, daß ich mit meiner Antwort die Frage treffe...

Du möchtest also den Extremwert einer Funktion [mm] f:\IR³ \to \IR [/mm] bestimmen unter der Nebenbedingung x²+y²+z²=1, also auf der Oberfläche (Rand ) der Einheitskugel.

Hierzu untersuchst Du die Funktion [mm] L(x,y,z,\lambda):=f(x,y,z) [/mm] + [mm] \lambda(x²+y²+z²-1). [/mm]


Wäre die NB gewesen [mm] x^2+y^2+z^2\le [/mm] 1,
so würdest Du mit f eine "normale" Extremwertbestimmung durch führen, nachschauen, für welche der gefundenen Extrema die nebenbedingung erfüllt ist, und anschließend würdest Du wie oben noch den Rand untersuchen.

Bei der NB [mm] x^2+y^2+z^2< [/mm] 1 entfällt die Untersuchung des Randes.

Mal grob gesagt: wenn die NB mit "=" oder [mm] "\le, \ge" [/mm] ist, ist der Rand (auch) zu untersuchen (Lagrange).

Gruß v. Angela




Bezug
                
Bezug
Lagrange Multiplikatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 12.07.2008
Autor: Pidgin

Vielleicht war meine Frage etwas verwirrend, sorry.
Was ich eigentlich wissen wollte, wie man die Nebenbedingung für die Formel der Lagrange Multiplikatoren umschreibt?
Meine Nebenbedingung [mm] x^2+y^2+z^2=1 [/mm]

1.Möglichkeit: g(x,y,z) = [mm] 1-x^2-y^2-z^2 [/mm]
2. Möglichkeit g(x,y,z) = [mm] x^2+y^2+z^2- [/mm] 1

In der Musterlösung ist die 2. Möglichkeit gewählt worden. Warum widerspricht das nicht dem Satz aus meinem letzten Post, da bei der 2. Möglichkeit g(x,y,z) < 0 im Inneren  der Einheitskugel ist?

Bezug
                        
Bezug
Lagrange Multiplikatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Sa 12.07.2008
Autor: angela.h.b.


> Vielleicht war meine Frage etwas verwirrend, sorry.
>  Was ich eigentlich wissen wollte, wie man die
> Nebenbedingung für die Formel der Lagrange Multiplikatoren
> umschreibt?
>  Meine Nebenbedingung [mm]x^2+y^2+z^2=1[/mm]
>  
> 1.Möglichkeit: g(x,y,z) = [mm]1-x^2-y^2-z^2[/mm]
>  2. Möglichkeit g(x,y,z) = [mm]x^2+y^2+z^2-[/mm] 1
>  
> In der Musterlösung ist die 2. Möglichkeit gewählt worden.
> Warum widerspricht das nicht dem Satz aus meinem letzten
> Post, da bei der 2. Möglichkeit g(x,y,z) < 0 im Inneren  
> der Einheitskugel ist?

Hallo,

möglicherweise ahne ich jetzt ganz dunkel, wo Dein Problem liegt.

Wenn die Nebenbedingung lautet x²+y²+z²=1,  so hat das nichts mit "<" oder ">" zu tun.

Denn Du interessierst Dich ja nur für die Punkte auf der Oberfläche der Kugel, also die Vektoren vom Betrag 1.

Ob man nun  [mm] g_1(x,y,z)=x²+y²+z²-1=0 [/mm]   als NB nimmt oder  [mm] g_2(x,y,z)= [/mm] -(x²+y²+z²-1)=0, ist im Prinzip egal.  Es sind doch dieselben Punkte, die [mm] g_1(x,y,z)=0 [/mm] bzw. [mm] g_2(x,y,z)=0 [/mm] erfüllen, eben die Punkte auf dem Rand der Kugel.


Die Bedingung x²+y²+z²<1 würde völlig andere Punkte beschreiben, nämlich die im Inneren der Einheitskugel.

Hier würdest Du, wenn Du die lok. Extrema von f auf [mm] \IR³ [/mm] bestimmt hast, prüfen, ob für diese Punkte x²+y²+z²<1  bzw. x²+y²+z²-1<0 bzw. 0<1-x²+y²+z² gilt.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]