matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesLagrangsche Fehlerabschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Lagrangsche Fehlerabschätzung
Lagrangsche Fehlerabschätzung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrangsche Fehlerabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 04.06.2012
Autor: dudu93

Aufgabe
Bestimmen Sie [mm] T_2(x;-1) [/mm] für die Fkt. f(x)=ln(x+2). Errechnen Sie einen Näherungswert für ln(0,8)=ln(-1,2+2) und schätzen Sie den Fehler mit der Restgliedformel von Lagrange ab.

Hallo, ich komme mit der Lagrangschen Fehlerabschätzung mit Hilfe der Restglieformel nicht ganz klar.

Das Taylorpolynom sowie den Näherungswert habe ich...das spielt hier erstmal keine Rolle.

Die Ableitungen sind übrigens:

f'(x) = [mm] (x+2)^{-1} [/mm]
f''(x) = [mm] (-1)(x+2)^{-2} [/mm]
f'''(x) = [mm] (-2)(-1)(x+2)^{-3} [/mm] bzw. [mm] \bruch{2}{(x+2)^3} [/mm]

Beim Einsetzen des Ent.punktes in die Fkt. und deren Ableitungen kommt:

f(-1)=0
f'(-1)=1
f''(-1)=-1
f'''(-1)=2

__________________________

Bei der Fehlerabschätzung bin ich soweit:

Der Zähler oben links ist übrigens die dritte Ableitung der Ausgangsfunktion.

[mm] |R_2(-1,2;-1)| [/mm] = | [mm] \bruch{2(x+2)^{-3}}{(2+1)!} [/mm] * [mm] (-1,2-(-1))^3 [/mm] |

Dann habe ich geguckt, mit welchem Wert (-1,2 oder -1 der Zähler auf der linken Seite am größten wird. Und das wäre -,2. Denn dadurch wird der Bruch kleiner->insgesamt also wird die Fkt. größer.

Deshalb habe ich dann für x -1,2 eingesetzt:

[mm] |R_2(-1,2;-1)| [/mm] = | [mm] \bruch{2(-,2+2)^{-3}}{6} [/mm] * [mm] (-1,2-(-1))^3 [/mm] |

Raus habe ich

[mm] |R_2(-1,2;-1)| [/mm] < [mm] -\bruch{1}{192} [/mm]

Laut Musterlösung kommt allerdings irgendwie rund 0,0056 raus.

Über Hilfe wäre ich sehr dankbar. LG


        
Bezug
Lagrangsche Fehlerabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 05.06.2012
Autor: MathePower

Hallo dudu93,

> Bestimmen Sie [mm]T_2(x;-1)[/mm] für die Fkt. f(x)=ln(x+2).
> Errechnen Sie einen Näherungswert für ln(0,8)=ln(-1,2+2)
> und schätzen Sie den Fehler mit der Restgliedformel von
> Lagrange ab.
>  Hallo, ich komme mit der Lagrangschen Fehlerabschätzung
> mit Hilfe der Restglieformel nicht ganz klar.
>
> Das Taylorpolynom sowie den Näherungswert habe ich...das
> spielt hier erstmal keine Rolle.
>  
> Die Ableitungen sind übrigens:
>  
> f'(x) = [mm](x+2)^{-1}[/mm]
>  f''(x) = [mm](-1)(x+2)^{-2}[/mm]
>  f'''(x) = [mm](-2)(-1)(x+2)^{-3}[/mm] bzw. [mm]\bruch{2}{(x+2)^3}[/mm]
>
> Beim Einsetzen des Ent.punktes in die Fkt. und deren
> Ableitungen kommt:
>  
> f(-1)=0
>  f'(-1)=1
>  f''(-1)=-1
>  f'''(-1)=2
>  
> __________________________
>  
> Bei der Fehlerabschätzung bin ich soweit:
>  
> Der Zähler oben links ist übrigens die dritte Ableitung
> der Ausgangsfunktion.
>  
> [mm]|R_2(-1,2;-1)|[/mm] = | [mm]\bruch{2(x+2)^{-3}}{(2+1)!}[/mm] *
> [mm](-1,2-(-1))^3[/mm] |
>  
> Dann habe ich geguckt, mit welchem Wert (-1,2 oder -1 der
> Zähler auf der linken Seite am größten wird. Und das
> wäre -,2. Denn dadurch wird der Bruch kleiner->insgesamt
> also wird die Fkt. größer.
>  
> Deshalb habe ich dann für x -1,2 eingesetzt:
>  
> [mm]|R_2(-1,2;-1)|[/mm] = | [mm]\bruch{2(-,2+2)^{-3}}{6}[/mm] * [mm](-1,2-(-1))^3[/mm]
> |
>  
> Raus habe ich
>
> [mm]|R_2(-1,2;-1)|[/mm] < [mm]-\bruch{1}{192}[/mm]
>


Hier muss es doch lauten:

[mm]|R_2(-1,2;-1)| < \blue{+}\bruch{1}{192}[/mm]


> Laut Musterlösung kommt allerdings irgendwie rund 0,0056
> raus.
>


In der Musterlösung wurde für den Nenner eine Zwischenstelle [mm]\xi[/mm],
die außerhalb von dem betrachten Intervall liegt, verwendet.

[mm]\xi[/mm] muß zwischen -1,2 und -1 liegen,
insofern hast Du alles richtig gemacht.


> Über Hilfe wäre ich sehr dankbar. LG

>


Gruss
MathePower  

Bezug
                
Bezug
Lagrangsche Fehlerabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Mi 06.06.2012
Autor: dudu93

Vielen Dank für die Antwort!

Meine erste Frage dazu:

Wieso genau muss es + 1/192 sein?

________________

Und meinst du es mit der Zwischenstelle etwa so?

[mm] |R_2(-1,2;-1)| [/mm] = | [mm] \bruch{2(-1,2+2)^{-3}}{6*(-1,1)} [/mm] * [mm] (-1,2-(-1))^3 [/mm] |

Ich habe für die Zwischenstelle -1,1 eingesetzt, da du ja sagtest, dass man dafür etwas wählt, das zwischen -1,2 und -1 liegt.

Rauskommen würde dann:

[mm] \bruch{5}{1056} [/mm] bzw. rund 0,0047

Wäre das so richtig? Das weicht ja auch von der Musterlösung ab. Also gibt's bei der Fehlereinschätzung immer mehrere Möglichkeiten?

LG

Bezug
                        
Bezug
Lagrangsche Fehlerabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Mi 06.06.2012
Autor: leduart

Hallo
"zwischen war etwas ungenau, [mm] \xi [/mm] muss aus dem abgeschlossenen Intervall sein. fuer eine Abschaetzung muss man den unguenstigsten Fall nehmen, also wie du die -1.2
also ist die Musterloesung falsch.
Gruss leduart

Bezug
                                
Bezug
Lagrangsche Fehlerabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Mi 06.06.2012
Autor: dudu93

Alles klar. Besten Dank!

Und wieso muss es nun statt -1/192 +1/192 heißen?

LG

Bezug
                                        
Bezug
Lagrangsche Fehlerabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mi 06.06.2012
Autor: leduart

Hallo
genauer muss es [mm] \pm [/mm] heissen!aber Fehler gibt man immer mit dem Betrag an.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]