matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLandau Symbolik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Landau Symbolik
Landau Symbolik < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau Symbolik: Frage, Lösung, Idee
Status: (Frage) beantwortet Status 
Datum: 16:52 Mo 30.06.2014
Autor: nobodon

Aufgabe
Ergibt
$f(z) = O(z [mm] \log [/mm] f(z))$ im Allgemeinen für reell stetige $f$ ein Widerspruch?

Ich sitze gerade an dieser Aufgabe, ich bin der Meinung, dass es einer ist, denn wenn ich $f(z)$ immer weiter in die die rechte Seite einsetze also, iteriere bekomme ich eine wirklich "komische" darstellung von $f(z)$

[mm] $O(z\log (z\log [/mm] (z ..))$
Aber wo ist es konkret falsch oder gibt es gegenbeispiele?

        
Bezug
Landau Symbolik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Di 01.07.2014
Autor: wauwau

ich nehme mal an [mm] $z\rightarrow\infty$ [/mm]

dann heißt das, dass  für hinreichend große $z$ der Ausdruck

[mm] $\frac{f(z)}{z \log{f(z)}}$ [/mm] beschränkt ist, was im allgemeinen kein Widerspruch ist.

z.B.: für $f(z)=z$  gilt es, für [mm] $f(z)=z^2$ [/mm] aber nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]