matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationLaplace-Transformation Dirac
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Laplace-Transformation" - Laplace-Transformation Dirac
Laplace-Transformation Dirac < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation Dirac: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 25.11.2009
Autor: Zweiti

Aufgabe
Bestimmen Sie die Lösung des folgenden AWP mittels Laplace-Transformation.
[mm] x''(t)+4x(t)=p\delta(t-2); p\in\IR; [/mm] x(0)=x'(0)=0

Hallo,

ich habe bisher folgende Rechnung:

[mm] L\{x''(t)+4x(t)\}=L\{p\delta(t-2)\} [/mm]
[mm] s^2X(s)-s*x(0)-s*x'(0)+4*X(s)=p*L\{\delta(t-2)\} [/mm]
[mm] X(s)*(s^2+4)=p*e^{-2s} [/mm]
[mm] X(s)=\bruch{p*e^{-2s}}{s^2+4} [/mm]
So jetzt müsste ich eigentlich eine Rücktransformation mit Tabelle machen, find aber in der Tabelle keinen Ausdruck mit [mm] e^{-2s}. [/mm]
Was nun?

Grüße
Zweiti

P.s. Hab diese Frage in keinem andern Forum gestellt.

        
Bezug
Laplace-Transformation Dirac: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Mi 25.11.2009
Autor: smarty

Hallo Zweiti,


> Bestimmen Sie die Lösung des folgenden AWP mittels
> Laplace-Transformation.
>  [mm]x''(t)+4x(t)=p\delta(t-2); p\in\IR;[/mm] x(0)=x'(0)=0

>  Hallo,
>  
> ich habe bisher folgende Rechnung:
>  
> [mm]L\{x''(t)+4x(t)\}=L\{p\delta(t-2)\}[/mm]
>  [mm]s^2X(s)-s*x(0)-s*x'(0)+4*X(s)=p*L\{\delta(t-2)\}[/mm]
>  [mm]X(s)*(s^2+4)=p*e^{-2s}[/mm]
>  [mm]X(s)=\bruch{p*e^{-2s}}{s^2+4}[/mm]
>  So jetzt müsste ich eigentlich eine Rücktransformation
> mit Tabelle machen, find aber in der Tabelle keinen
> Ausdruck mit [mm]e^{-2s}.[/mm]
>  Was nun?

wäre hier vielleicht der Faltungssatz eine Alternative zur Korrespondenztabelle?


Grüße
Smarty

Bezug
                
Bezug
Laplace-Transformation Dirac: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Mi 25.11.2009
Autor: Zweiti

Naja,
dann müsste ich ja im Bildbereich zwei einzelne Fkt. haben, die ich transformieren kann, aber mein Problem ist, dass ich die Fkt. mit dem [mm] e^{-2s} [/mm] nicht transformieren kann.


Bezug
        
Bezug
Laplace-Transformation Dirac: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 25.11.2009
Autor: Rene


> Bestimmen Sie die Lösung des folgenden AWP mittels
> Laplace-Transformation.
>  [mm]x''(t)+4x(t)=p\delta(t-2); p\in\IR;[/mm] x(0)=x'(0)=0
>  Hallo,
>  
> ich habe bisher folgende Rechnung:
>  
> [mm]L\{x''(t)+4x(t)\}=L\{p\delta(t-2)\}[/mm]
>  [mm]s^2X(s)-s*x(0)-s*x'(0)+4*X(s)=p*L\{\delta(t-2)\}[/mm]

Hier erstmal korrigieren, Für die Differentiation gilt:
[mm]s^2X(s)-s*x(0)-x'(0)+4*X(s)=p*L\{\delta(t-2)\}[/mm]
(Was ein Glück wenn die Anfangsbedingungen Null sind)

>  [mm]X(s)*(s^2+4)=p*e^{-2s}[/mm]
>  [mm]X(s)=\bruch{p*e^{-2s}}{s^2+4}[/mm]
>  So jetzt müsste ich eigentlich eine Rücktransformation
> mit Tabelle machen, find aber in der Tabelle keinen
> Ausdruck mit [mm]e^{-2s}.[/mm]
>  Was nun?
>  
> Grüße
>  Zweiti
>  
> P.s. Hab diese Frage in keinem andern Forum gestellt.

Ich würde mir mal den Eingang etwas genauer Anschauen. Der ist zeitverschoben. (Du hast ja auch die Zeitverschiebung für die Hintransformation genutzt, warum nicht acuh für die Rücktransformation?)

[mm]X(s)={\underbrace{\frac{p}{s^2+4}}_{\tilde{X}(s)}\cdot e^{-2s}[/mm]

Rücktrafo (ungedämpftes System 2. Ordnung -> muss eine sinusartige Funktion rauskommen)

Also: [mm]x(\tilde{t})=L\left\{\tilde{X}(s)\right\} = L\left\{\frac{p}{2}\frac{2}{s^2+4}\right\} = \frac{p}{2}\underbrace{L\left\{\frac{2}{s^2+4}\right\}}_{\sin(2\tilde{t})}=\frac{p}{2}\sin(2\tilde{t})[/mm]

Jetzt noch die Zeitverschiebung berücksichtigen [mm]\tilde{t}=t-2[/mm] und du hast die Lösung

[mm] x(t)=\frac{p}{2}\sin(2t-4) [/mm]

Ist ja auch logisch, wenn ich das lineare System erst später anrege, Antwortet es eben auch erst später.

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]