matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenLaplace Rücktransformation DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentialgleichungen" - Laplace Rücktransformation DGL
Laplace Rücktransformation DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Rücktransformation DGL: Partialbruchzerlegung
Status: (Frage) beantwortet Status 
Datum: 03:50 Mi 18.08.2010
Autor: pavelle

[mm] Y(s)=\frac{1}{s^{2}*(s+1)(s-2)} [/mm]

Nullstellen:

[mm] s_{1/2}=0 [/mm]
[mm] s_{3}=-1 [/mm]
[mm] s_{2}=2 [/mm]

[mm] \frac{1}{s^{2}*(s+1)(s-2)} [/mm] = [mm] \frac{A}{s}+\frac{B}{s^2}+\frac{C}{s+1}+\frac{D}{s-2} [/mm] = [mm] \frac{A*s*(s+1)*(s-2)+B(s+1)(s-2)+C*s^{2}*(s-2)+D*s^{2}*(s+1)}{s^{2}*(s+1)(s-2)} [/mm]


für [mm] ss_{1/2}=0 \Rightarrow B=-\frac{1}{2} [/mm]
für [mm] ss_{3}=-1 \Rightarrow C=-\frac{1}{3} [/mm]
für [mm] ss_{4}=2 \Rightarrow D=\frac{1}{12} [/mm]


Fehlt nur noch der Koeffizient A, beidem ich aber nicht weiter weiß, da sämtliche Nustellen das A auflösen.
Weiß jemand einen Rat?

Gruß


        
Bezug
Laplace Rücktransformation DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Mi 18.08.2010
Autor: fred97


> [mm]Y(s)=\frac{1}{s^{2}*(s+1)(s-2)}[/mm]
>  
> Nullstellen:
>  
> [mm]s_{1/2}=0[/mm]
>  [mm]s_{3}=-1[/mm]
>  [mm]s_{2}=2[/mm]
>  
> [mm]\frac{1}{s^{2}*(s+1)(s-2)}[/mm] =
> [mm]\frac{A}{s}+\frac{B}{s^2}+\frac{C}{s+1}+\frac{D}{s-2}[/mm] =
> [mm]\frac{A*s*(s+1)*(s-2)+B(s+1)(s-2)+C*s^{2}*(s-2)+D*s^{2}*(s+1)}{s^{2}*(s+1)(s-2)}[/mm]
>  
>
> für [mm]ss_{1/2}=0 \Rightarrow B=-\frac{1}{2}[/mm]
>  für [mm]ss_{3}=-1 \Rightarrow C=-\frac{1}{3}[/mm]
>  
> für [mm]ss_{4}=2 \Rightarrow D=\frac{1}{12}[/mm]
>  
>
> Fehlt nur noch der Koeffizient A, beidem ich aber nicht
> weiter weiß, da sämtliche Nustellen das A auflösen.
>  Weiß jemand einen Rat?


Es ist doch

        [mm] $A*s*(s+1)*(s-2)+B(s+1)(s-2)+C*s^{2}*(s-2)+D*s^{2}*(s+1)=1$ [/mm]

Tipp: Koeffizientenvergleich

FRED

>  
> Gruß
>  


Bezug
        
Bezug
Laplace Rücktransformation DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Mi 18.08.2010
Autor: gfm


> [mm]Y(s)=\frac{1}{s^{2}*(s+1)(s-2)}[/mm]
>  
> Nullstellen:
>  
> [mm]s_{1/2}=0[/mm]
>  [mm]s_{3}=-1[/mm]
>  [mm]s_{2}=2[/mm]
>  
> [mm]\frac{1}{s^{2}*(s+1)(s-2)}[/mm] =
> [mm]\frac{A}{s}+\frac{B}{s^2}+\frac{C}{s+1}+\frac{D}{s-2}[/mm] =
> [mm]\frac{A*s*(s+1)*(s-2)+B(s+1)(s-2)+C*s^{2}*(s-2)+D*s^{2}*(s+1)}{s^{2}*(s+1)(s-2)}[/mm]
>  
>
> für [mm]ss_{1/2}=0 \Rightarrow B=-\frac{1}{2}[/mm]
>  für [mm]ss_{3}=-1 \Rightarrow C=-\frac{1}{3}[/mm]
>  
> für [mm]ss_{4}=2 \Rightarrow D=\frac{1}{12}[/mm]
>  
>
> Fehlt nur noch der Koeffizient A, beidem ich aber nicht
> weiter weiß, da sämtliche Nustellen das A auflösen.
>  Weiß jemand einen Rat?
>  
> Gruß
>  

Wenn Du die Koeffizienten bestimmt hast, die sich bequem durch Einsetzen der Nullstellen gewinnen lassen, kannst Du alternativ (zum Koeffizientenvergleich durch Sortierung der Terme nach Potenzen der Variablen) die restlichen, die, wie in Deinem Fall, eben nicht durch Einsetzen der Nullstellen bestimmbar sind, durch Einsetzen beliebiger Nichtnullstellen bestimmen.

LG

gfm



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]