matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenLaufzeit rekursiver Methoden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algorithmen und Datenstrukturen" - Laufzeit rekursiver Methoden
Laufzeit rekursiver Methoden < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeit rekursiver Methoden: Java Aufgabe
Status: (Frage) überfällig Status 
Datum: 20:57 Mo 24.01.2011
Autor: Highchiller

Aufgabe
Eure Aufgabe ist es, im folgenden einen besonders effizienten Algorithmus zum berechnen für [mm] x^n [/mm] anzugeben. Dabei soll x [mm] \in \IR [/mm] und n [mm] \in \IN [/mm] sein.
Folgende Gleichheit soll euch einen Hinweis auf das Funktionsprinzip geben:
$ [mm] x^9 [/mm] = x [mm] \cdot x^4 \cdot x^4 [/mm] $.

a)Entwickelt einen rekursiven Algorithmus in JAVA, der die Potenz [mm] x^n [/mm] möglichst effizient berechnet, das heißt die Laufzeit soll c [mm] \cdot \log_2{n} [/mm] für eine natürliche Zahl c sein. Der Algorithmus darf keine Schleife enthalten und auch nicht Math.pow verwenden.
Beweist seine Laufzeit, d.h. insbesondere findet ein passendes c.
Hinweis: Um die Laufzeit zu bestimmen, zählt ihr die Anzahl der rekursiven Aufrufe des Algorithmus.

So. Frisch ans Werk, die Methode ist schnell implementiert.
public static long pow(int x, int y){
[mm] \quad [/mm] if (x == 0 || x == 1 || y == 1) return x;
[mm] \quad [/mm] if (y == 0) return 1;

[mm] \quad [/mm] long tmp = pow(x,y/2);

[mm] \quad [/mm] if (y % 2 == 0) return tmp * tmp;
[mm] \quad [/mm] else return x*tmp*tmp;
}

Nun zum eigentlichen Problem. Dem Beweis der Laufzeit.
Wenn T die Anzahl der rekursiven Aufrufe ist, dann bin ich der Meinung, dass ganz allgemein gilt:
$ T(x, n) [mm] \le \log_2{n} \quad \forall [/mm] n [mm] \in \IN [/mm] $
Da es für alle Beispiel die ich mir gesucht habe, geklappt habt. Nun hab ich mir gedacht, beweis ich das einfach über vollständige Induktion.
Dabei lauf ich allerdings immer wieder in eine Sackgasse.

$ T(x, n+1) = T(x, [mm] \left \lfloor \frac{n+1}{2} \right \rfloor) [/mm] + 1 $
Die Gleichheit resultiert ja aus dem Java-Code.
Aber nun komm ich nicht ganz weiter. Irgendwie muss ich zeigen.
$ T(x, n+1) [mm] \le \log_2{(n+1)} \quad \forall [/mm] n [mm] \in \IN [/mm] $
Aber da komm ich Partou nicht hin.

Hat jemand eine Idee, einen Vorschlag? Mach ich was falsch? Vielen Dank schon mal im Vorraus.

Gruß André

        
Bezug
Laufzeit rekursiver Methoden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Mi 26.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]