matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurent-Entwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Laurent-Entwicklung
Laurent-Entwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurent-Entwicklung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:09 So 18.02.2007
Autor: Locutus

Aufgabe
siehe []hier

Sei [mm] f(z)=\bruch{e^{az}}{(1+e^{z})^{2}} [/mm] für a reell.
1. Man bestimme alle Singularitäten von f und deren Typ.
2. Berechnen Sie den Hauptteil der Laurent-Entwicklung von f um den Punkt [mm] z_{0}=i\pi [/mm]

Hallo zusammen.

Ich hoffe ihr könnt mir bei dieser Aufgabe helfen.
Also ich denke die Funktion hat Pole zweiter Ordnung bei [mm] z=i*(\pi+2\pik), k\in\IZ [/mm]
Es ist ein Pol, weil die Funktion meromorph (Quotient zweier holom. Fkt.) ist und deswegen keine wesentlichen Singularitäten haben kann.
Ist diese Argumentation richtig?

Aber wie berechne ich jetzt den Hauptteil der Laurent-Entwicklung?
Also der (-1)-Koeffizient müsste ja das Residuum bei [mm] z_{0} [/mm] sein. und da ein Pol zweiter Ordnung vorliegt, kann es ja dann nur noch den (-2)-Koeffizienten geben.
Beide Koeffizienten kann ich leider nicht ausrechnen. Bitte helft mir!!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Laurent-Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 18.02.2007
Autor: felixf

Hallo Locutus!

> siehe
> []hier
>  
> Sei [mm]f(z)=\bruch{e^{az}}{(1+e^{z})^{2}}[/mm] für a reell.
>  1. Man bestimme alle Singularitäten von f und deren Typ.
>  2. Berechnen Sie den Hauptteil der Laurent-Entwicklung von
> f um den Punkt [mm]z_{0}=i\pi[/mm]
>  Hallo zusammen.
>  
> Ich hoffe ihr könnt mir bei dieser Aufgabe helfen.
>  Also ich denke die Funktion hat Pole zweiter Ordnung bei
> [mm]z=i*(\pi+2\pi k), k\in\IZ[/mm]

Ja, das ist richtig so.

>  Es ist ein Pol, weil die Funktion
> meromorph (Quotient zweier holom. Fkt.) ist und deswegen
> keine wesentlichen Singularitäten haben kann.

Genau.

>  Ist diese Argumentation richtig?

Ja; du solltest aber noch erwaehnen, dass der Zaehler niemals verschwindet und auch keine Polstellen hat.

> Aber wie berechne ich jetzt den Hauptteil der
> Laurent-Entwicklung?
>  Also der (-1)-Koeffizient müsste ja das Residuum bei [mm]z_{0}[/mm]
> sein. und da ein Pol zweiter Ordnung vorliegt, kann es ja
> dann nur noch den (-2)-Koeffizienten geben.
>  Beide Koeffizienten kann ich leider nicht ausrechnen.
> Bitte helft mir!!

Mach es doch wie folgt: du weisst, dass die Laurent-Entwicklung von der Form [mm] $\sum_{k=-2}^\infty a_k z^k$ [/mm] ist; also ist [mm] $\sum_{k=-2}^\infty a_k z^k [/mm] = [mm] \frac{e^{a z}}{(1 - e^z)^2}$. [/mm] Wenn du jetzt mit $(1 - [mm] e^z)^2$ [/mm] multiplizierst, die Reihen einsetzt und das ganze ausmultiplizierst und Koeffizientenvergleich machst, bekommst du Gleichungen fuer die Koeffizienten [mm] $a_i$. [/mm] Und damit solltest du [mm] $a_{-2}$ [/mm] und [mm] $a_{-1}$ [/mm] bestimmen koennen.

LG Felix


Bezug
                
Bezug
Laurent-Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 18.02.2007
Autor: Locutus

Hallo Felix.

Danke für die Antwort.

> Wenn du jetzt mit [mm](1 - e^z)^2[/mm] multiplizierst, die Reihen
> einsetzt und das ganze ausmultiplizierst und
> Koeffizientenvergleich machst, bekommst du Gleichungen fuer
> die Koeffizienten [mm]a_i[/mm].

Welche Reihen soll ich denn einsetzen? muss da irgendwie das [mm] i\pi [/mm] mit rein?
oder soll ich z.b für (1 - [mm] e^z)^2 [/mm] einfach [mm] (1-\summe_{k=0}^{\infty}\bruch{z^{k}}{k!})^2 [/mm] einsetzen?
Dann komme ich leider nicht viel weiter.

Lg Locutus

Bezug
                        
Bezug
Laurent-Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Mo 19.02.2007
Autor: felixf

Hallo Locutus,

> > Wenn du jetzt mit [mm](1 - e^z)^2[/mm] multiplizierst, die Reihen
> > einsetzt und das ganze ausmultiplizierst und
> > Koeffizientenvergleich machst, bekommst du Gleichungen fuer
> > die Koeffizienten [mm]a_i[/mm].
>
> Welche Reihen soll ich denn einsetzen? muss da irgendwie
> das [mm]i\pi[/mm] mit rein?

sorry, das hab ich ganz vergessen: du musst jeweils die Reihenentwicklung um $i [mm] \pi$ [/mm] nehmen. Also [mm] $\frac{e^{a z}}{(1 - e^z)^2} [/mm] = [mm] \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k$ [/mm] schreiben (mit noch unbekannten [mm] $a_k$), [/mm] das zu $(1 - [mm] e^z)^2 [/mm] = [mm] e^{a z} \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k$ [/mm] umformen, und fuer [mm] $e^z$ [/mm] und [mm] $e^{a z}$ [/mm] jeweils eine Reihenentwicklung um $i [mm] \pi$ [/mm] einsetzen.

Wenn du dich fragst, wie du einfach eine Reihenentwicklung von [mm] $e^{a z}$ [/mm] um $i [mm] \pi$ [/mm] finden kannst: schreibe [mm] $e^{a z} [/mm] = [mm] e^{a (z - i \pi) + a i \pi} [/mm] = [mm] e^{a (z - i \pi)} e^{a i \pi} [/mm] = [mm] e^{a i \pi} \sum_{k=0}^\infty \frac{a^k}{k!} [/mm] (z - i [mm] \pi)^k$; [/mm] der letzte Umforumungsschritt ist einfach die ganz normale Exponentialreihe genommen und anstatt $z$ das Argument $a (z - i [mm] \pi)$ [/mm] eingesetzt.

So. Damit hast du jetzt [mm] $\left( 1 - \sum_{k=0}^\infty \frac{a^k}{k!} (z - i \pi)^k \right)^2 [/mm] = [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k \cdot \sum_{\ell = 0}^\infty a_\ell [/mm] (z - i [mm] \pi)^\ell$. [/mm]

Auf beiden Seiten kannst du das jetzt mit Hilfe des Cauchy-Produktes zu einer Reihe zusammenmultiplizieren, bzw. eigentlich brauchst du sowieso nur die Koeffizienten von $(z - i [mm] \pi)^k$ [/mm] fuer kleine $k$. Und wenn du das hast, machst du einfach Koeffizientenvergleich. Kommst du jetzt weiter?

LG Felix


Bezug
                                
Bezug
Laurent-Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Mo 19.02.2007
Autor: Locutus

Hallo Felix.
Dank deiner Erläuterung habe ich den Weg jetzt verstanden, aber ich komme auf eine etwas andere Formel und dann auf das Ergebnis [mm] a_{-2}=0, [/mm] was doch nicht sein kann, weil dort ein Pol zweiter Ordnung vorliegt, oder?

Also die Rechnung:
Aus $ [mm] \frac{e^{a z}}{(1 - e^z)^2} [/mm] = [mm] \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] $ folgt ja $ [mm] e^{a z} [/mm] = (1 - [mm] e^z)^2*\sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] $

In diese Gleichung setze ich dann folgendes ein:
$ [mm] e^{a z} [/mm] = [mm] e^{a i \pi} \sum_{k=0}^\infty \frac{a^k}{k!} [/mm] (z - i [mm] \pi)^k [/mm] $  das hast du ja gezeigt.
$ [mm] e^{z} [/mm] = - [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k [/mm] $ das gleiche für a=1

führt zu: $ [mm] e^{a i \pi} \sum_{k=0}^\infty \frac{a^k}{k!} [/mm] (z - i [mm] \pi)^k [/mm] = (1 + [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k)^2\sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] $

Da die linken Reihen bei k=0 beginnen, bekomme ich beim Koeffizientenvergleich für die Glieder mit $ (z - i [mm] \pi)^{-2} [/mm] $ :
$ 0*(z - i [mm] \pi)^{-2}=(1+1)^{2}*a_{-2}(z [/mm] - i [mm] \pi)^{-2} [/mm] $
Woraus folgt [mm] a_{-2}=0 [/mm]
Ist da ein Fehler drin oder kann bei einem Pol zweiter Ordnung der -2. Koeffizient Null sein?

Vielen Dank für deine Hilfe
Lg Locutus

Bezug
                                        
Bezug
Laurent-Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 19.02.2007
Autor: felixf

Hallo Locutus!

>  Dank deiner Erläuterung habe ich den Weg jetzt verstanden,
> aber ich komme auf eine etwas andere Formel und dann auf
> das Ergebnis [mm]a_{-2}=0,[/mm] was doch nicht sein kann, weil dort
> ein Pol zweiter Ordnung vorliegt, oder?

Ja, das kann tatsaechlich nicht sein.

> Also die Rechnung:
>  Aus [mm]\frac{e^{a z}}{(1 - e^z)^2} = \sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]
> folgt ja [mm]e^{a z} = (1 - e^z)^2*\sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]
>  
> In diese Gleichung setze ich dann folgendes ein:
>  [mm]e^{a z} = e^{a i \pi} \sum_{k=0}^\infty \frac{a^k}{k!} (z - i \pi)^k[/mm]
>  das hast du ja gezeigt.
>  [mm]e^{z} = - \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k[/mm] das
> gleiche für a=1
>  
> führt zu: [mm]e^{a i \pi} \sum_{k=0}^\infty \frac{a^k}{k!} (z - i \pi)^k = (1 + \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k)^2\sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]

Genau.

> Da die linken Reihen bei k=0 beginnen, bekomme ich beim
> Koeffizientenvergleich für die Glieder mit [mm](z - i \pi)^{-2}[/mm]
> :
>  [mm]0*(z - i \pi)^{-2}=(1+1)^{2}*a_{-2}(z - i \pi)^{-2}[/mm]

Vorsicht, das auf der rechten Seite stimmt nicht!

Du musst wie folgt vorgehen: es ist ja [mm] $\sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k [/mm] = 1 + (z - i [mm] \pi) [/mm] + [mm] \frac{1}{2} [/mm] (z - i [mm] \pi)^2 [/mm] + [mm] \frac{1}{6} [/mm] (z - i [mm] \pi)^3 [/mm] + [mm] \dots$, [/mm] und somit $(1 - [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k)^2 [/mm] = (-(z - i [mm] \pi) [/mm] - [mm] \frac{1}{2} [/mm] (z - i [mm] \pi)^2 [/mm] - [mm] \frac{1}{6} [/mm] (z - i [mm] \pi)^3 [/mm] + [mm] \dots)^2 [/mm] = (z - i [mm] \pi)^2 [/mm] + 2 [mm] \frac{1}{2} [/mm] (z - i [mm] \pi)^3 [/mm] + [mm] (\frac{1}{2^2} [/mm] + 2 [mm] \frac{1}{6}) [/mm] (z - i [mm] \pi)^4 [/mm] + [mm] \dots$. [/mm]

Und damit ist $(1 - [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k)^2 \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] = ((z - i [mm] \pi)^2 [/mm] + 2 [mm] \frac{1}{2} [/mm] (z - i [mm] \pi)^3 [/mm] + [mm] (\frac{1}{2^2} [/mm] + 2 [mm] \frac{1}{6}) [/mm] (z - i [mm] \pi)^4 [/mm] + [mm] \dots) \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] = [mm] a_{-2} [/mm] + [mm] (a_{-1} [/mm] + 2 [mm] \frac{1}{2} a_{-2}) [/mm] (z - i [mm] \pi) [/mm] + [mm] \dots$. [/mm]

Damit solltest du jetzt weiterkommen.

LG Felix


Bezug
                                                
Bezug
Laurent-Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mo 19.02.2007
Autor: Locutus

Hi.
Also ich hab ja auf der rechten Seite [mm] (1 + \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k)^2\sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]
Du hast dort $ (1 - [mm] \sum_{k=0}^\infty \frac{1}{k!} [/mm] (z - i [mm] \pi)^k)^2 \sum_{k=-2}^\infty a_k [/mm] (z - i [mm] \pi)^k [/mm] $
Ich denke da muss aber ein Plus in der Klammer stehen, weil [mm]e^{z} = e^{z-i\pi+i\pi} = e^{i\pi}e^{z-i\pi} = - \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k[/mm]
Beachte das Minus, weil ja um $ [mm] i\pi [/mm] $ entwickelt. Und nach dem Einsetzen in $ (1 - [mm] e^z)^2 [/mm] $ habe ich ein Plus in der Klammer.
Also kürzt sich die 1 in der Klammer nicht weg, sondern wird zu [mm] (1+1)^2 [/mm] für den (-2)-Koeffizienten.
Bei dir ist doch gar kein (-2)-Koeffizient vorhanden, oder nicht?

Noch irgendeine Idee?

Lg Locutus

Bezug
                                                        
Bezug
Laurent-Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 19.02.2007
Autor: felixf

Hi Locutus,

mir faellt grad auf, das ich aus Versehen in meiner ersten Antwort die Aufgabenstellung `veraendert' hab: die urspruengliche Funktion ist [mm] $\frac{e^{a z}}{(1 + e^z)^2}$ [/mm] und nicht [mm] $\frac{e^{a z}}{(1 - e^z)^2}$! [/mm]

>  Also ich hab ja auf der rechten Seite [mm](1 + \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k)^2\sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]
>  
> Du hast dort [mm](1 - \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k)^2 \sum_{k=-2}^\infty a_k (z - i \pi)^k[/mm]
>  
> Ich denke da muss aber ein Plus in der Klammer stehen, weil
> [mm]e^{z} = e^{z-i\pi+i\pi} = e^{i\pi}e^{z-i\pi} = - \sum_{k=0}^\infty \frac{1}{k!} (z - i \pi)^k[/mm]
> Beachte das Minus, weil ja um [mm]i\pi[/mm] entwickelt.

Ja, da hast du Recht, da muss ein Minus hin.

> Und nach dem Einsetzen in [mm](1 - e^z)^2[/mm] habe ich ein Plus in der Klammer.

Und wenn man das (urspruengliche) $(1 + [mm] e^z)^2$ [/mm] nimmt, kommt wieder ein Minus raus und alles geht auf :)

Sorry fuer die Verwirrung!

LG Felix


Bezug
                                                                
Bezug
Laurent-Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Mo 19.02.2007
Autor: Locutus

Oh, das stimmt. Hab ich gar nicht bemerkt.
Jetzt ist es klar. Nochmals vielen dank für deine Hilfe.

LG Locutus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]