matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurententwicklung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Laurententwicklung
Laurententwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurententwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 01.01.2007
Autor: sonnenblumale

Aufgabe
Entwickeln Sie die Funktion f(z) = [mm] \bruch{4z-z²}{(z²-4)(z+1)} [/mm] in dem Kreisring [mm] A_{0,1}(-1) [/mm] in eine Laurentreihe.

Hi Leutz!

Bin gerade etwas verwirrt bei der Aufgabe.

Die Pole der Funktion befinden sich in -1, -2, 2. Dh, mit diesem Kreisring entwickle ich im Mittelpunkt -1 (1. Pol) und die restlichen Pole befinden sich am Rand.

Bis jetzt habe ich zuerst die Funktion in 3 Terme partialbruchzerlegt, sodass ich die Pole herauskristallisiert habe:
f(z) = [mm] -\bruch{3}{z+2} [/mm] + 1/3 * [mm] \bruch{1}{z-2} [/mm] + 5/3* [mm] \bruch{1}{z+1} [/mm]

Für -2, 2 ist die Laurententwicklung gleich der Taylorentwicklung. Aber was mache ich mit -1.  Unsere Idee war immer die Verwendung der geometrischen Reihe. Aber ich weiß nicht wie ich [mm] \bruch{1}{z+1} [/mm] in eine geometrische Reihe verwandeln soll bzw. ob ich das überhaupt brauche???? Wenn nein, wieso?

Viele Dank & lg

sonnenblumale

        
Bezug
Laurententwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 01.01.2007
Autor: moudi


> Entwickeln Sie die Funktion f(z) =
> [mm]\bruch{4z-z²}{(z²-4)(z+1)}[/mm] in dem Kreisring [mm]A_{0,1}(-1)[/mm] in
> eine Laurentreihe.
>  Hi Leutz!

Hallo sonnenblumale

>  
> Bin gerade etwas verwirrt bei der Aufgabe.
>  
> Die Pole der Funktion befinden sich in -1, -2, 2. Dh, mit
> diesem Kreisring entwickle ich im Mittelpunkt -1 (1. Pol)
> und die restlichen Pole befinden sich am Rand.
>
> Bis jetzt habe ich zuerst die Funktion in 3 Terme
> partialbruchzerlegt, sodass ich die Pole
> herauskristallisiert habe:
>  [mm]f(z) = -\bruch{3}{z+2} + 1/3 * \bruch{1}{z-2} + 5/3* \bruch{1}{z+1}[/mm]

[ok]

>  
> Für -2, 2 ist die Laurententwicklung gleich der
> Taylorentwicklung. Aber was mache ich mit -1.  Unsere Idee
> war immer die Verwendung der geometrischen Reihe. Aber ich
> weiß nicht wie ich [mm]\bruch{1}{z+1}[/mm] in eine geometrische
> Reihe verwandeln soll bzw. ob ich das überhaupt brauche????

Nein, dieser Term ist der "-1" Koeffizient der Laurentreihenentwicklung (i.e. [mm] $a_{-1}=5/3$) [/mm]

Die restlichen Terme [mm] ($\bruch{-3}{z+2} [/mm] + 1/3  [mm] \bruch{1}{z-2}$) [/mm] musst du, da sie bei -1  keine Pole besitzen, als Taylorreihe an der Stelle -1 entwickeln. Das geht am besten, indem du sie als geometrische Reihen schreibst.

[mm] $\frac13 \frac{1}{z-2}=\frac13 \frac{1}{(z+1)-3}=\frac13 \frac{1/3}{(z+1)/3-1}=-\frac19 \frac{1}{1-(z+1)/3}=$ [/mm]

[mm] $=-\frac19\frac{1}{1-x}=-\frac19 (1+x+x^2+x^3+\dots)$, [/mm] wobei $x=(z+1)/3$

$-3 [mm] \frac{1}{z+2}=-3 \frac{1}{(z+1)+1}=-3\frac{1}{1+(z+1)}=$ [/mm]

[mm] $=-3\frac{1}{1+x}=-3(1-x+x^2-x^3+\dots)$, [/mm] wobei $x=(z+1)$

mfG Moudi

> Wenn nein, wieso?
>  
> Viele Dank & lg
>  
> sonnenblumale

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]