Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gesucht ist die Laurententwicklung von [mm] \[f(z)=\bruch{1}{1-z^{2}}\] [/mm] um [mm] \[z_{0}=0\] [/mm] im Bereich [mm] \[0<|z+1|<2\] [/mm] und [mm] \[2<|z+1|\] [/mm] |
Ich habe für diese Aufgabe die geometrishce Reihe bedient, d.h.
[mm] \[\bruch{1}{1-z^{2}}=\bruch{1}{2}\left(\bruch{1}{1+z}+\bruch{1}{1-z}\right)\]
[/mm]
Nun ist [mm] \[\bruch{1}{1-z}\] [/mm] die geometrische Reihe, deren Reihenentwicklung bekannt ist. Der andere Term wird auf die Form einer geometrischen Reihe gebracht, d.h.
[mm] \[\bruch{1}{1+z}=\bruch{1}{2+z-1}=\bruch{1}{2}\left(\bruch{1}{1+\bruch{z-1}{2}}\right)\]
[/mm]
Da [mm] \[|\bruch{z-1}{2}|<1\] [/mm] kann man erneut die geometrische Reihe anwenden und erhält
[mm] \[\bruch{1}{2}\summe_{k=0}^{\infty}(-1)^{k}\left(\bruch{z-1}{2}\right)^{k}\]
[/mm]
Dann ist die Laurentreihe
[mm] \[f(z)=\bruch{1}{2}\bruch{1}{1-z}+\bruch{1}{4}-...\]
[/mm]
Stimmt das? Ich war vor allem bei der Abschätzung von [mm] \[|\bruch{z-1}{2}|<1\] [/mm] nicht sicher und wie ich das alles in eine einzige Formel bringe.
Danke schon im Voraus.
P.S.: Habe so meine Probleme mit Reihen. Bin auch bei der Taylorreihe von [mm] \[\bruch{1}{z^{2}-7z+12}\] [/mm] um [mm] \[z_{0}=0\] [/mm] und dem entsprechenden Konvergenzradius an der expliziten Darstellung gescheitert. Einzelne Terme berechen geht, aber ich habe aus den ersten 3 Gliedern keine Rekursion für die Koeffizienten gesehen. ??
|
|
|
|
Hallo MaxPlanck,
> Gesucht ist die Laurententwicklung von
> [mm]\[f(z)=\bruch{1}{1-z^{2}}\][/mm] um [mm]\[z_{0}=0\][/mm] im Bereich
> [mm]\[0<|z+1|<2\][/mm] und [mm]\[2<|z+1|\][/mm]
> Ich habe für diese Aufgabe die geometrishce Reihe
> bedient, d.h.
>
> [mm]\[\bruch{1}{1-z^{2}}=\bruch{1}{2}\left(\bruch{1}{1+z}+\bruch{1}{1-z}\right)\][/mm]
> Nun ist [mm]\[\bruch{1}{1-z}\][/mm] die geometrische Reihe, deren
> Reihenentwicklung bekannt ist. Der andere Term wird auf die
> Form einer geometrischen Reihe gebracht, d.h.
>
> [mm]\[\bruch{1}{1+z}=\bruch{1}{2+z-1}=\bruch{1}{2}\left(\bruch{1}{1+\bruch{z-1}{2}}\right)\][/mm]
> Da [mm]\[|\bruch{z-1}{2}|<1\][/mm] kann man erneut die geometrische
> Reihe anwenden und erhält
>
> [mm]\[\bruch{1}{2}\summe_{k=0}^{\infty}(-1)^{k}\left(\bruch{z-1}{2}\right)^{k}\][/mm]
> Dann ist die Laurentreihe
> [mm]\[f(z)=\bruch{1}{2}\bruch{1}{1-z}+\bruch{1}{4}-...\][/mm]
>
Du musst doch im Bereich [mm]0 < \vmat{z+1} < 2[/mm] entwickeln.
Demnach
[mm]\bruch{1}{1-z}=\bruch{1}{1-\left(z+1-1\right)}=\bruch{1}{2-\left(z+1\right)}[/mm]
> Stimmt das? Ich war vor allem bei der Abschätzung von
> [mm]\[|\bruch{z-1}{2}|<1\][/mm] nicht sicher und wie ich das alles
> in eine einzige Formel bringe.
>
> Danke schon im Voraus.
>
> P.S.: Habe so meine Probleme mit Reihen. Bin auch bei der
> Taylorreihe von [mm]\[\bruch{1}{z^{2}-7z+12}\][/mm] um [mm]\[z_{0}=0\][/mm]
Zerlege diesen Bruch zunächst in Partialbrüche.
Diese Partialbrüche sin dann in geometrische Reihen zu entwickeln.
> und dem entsprechenden Konvergenzradius an der expliziten
> Darstellung gescheitert. Einzelne Terme berechen geht, aber
> ich habe aus den ersten 3 Gliedern keine Rekursion für die
> Koeffizienten gesehen. ??
Gruss
MathePower
|
|
|
|
|
Ok, danke, habe jetzt heraus, wie das Gebiet, in dem etwickelt wird, zum Tragen kommt (nämlich bei der geometrischen Reihe, wo [mm] \[|q|<1\] [/mm] sein muss). Für [mm] \[\bruch{1}{1-z}\] [/mm] habe ich die Reihe
[mm] \[\bruch{1}{2}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{n}\]
[/mm]
Wie zerlege ich [mm] \[\bruch{1}{1+z}\] [/mm] richtig, ich verzweifle gerade daran.
P.S.: eine Sache bereitet mir auch Kopfzerbrechen: Was ist das Residuum von [mm] \[\bruch{e^{z}}{(z^{2}-1)^{2}}\] [/mm] bei [mm] \[z_{0}=1\]? [/mm] Habe schon mit Integral und Limes probiert, aber beides nicht funktioniert, Mathematica sagt 0. Wie rechne ich das nach (muss ich eine Laurentreihenentwicklung machen? eher nicht.)
|
|
|
|
|
Hallo Schachtel5,
> Ok, danke, habe jetzt heraus, wie das Gebiet, in dem
> etwickelt wird, zum Tragen kommt (nämlich bei der
> geometrischen Reihe, wo [mm]\[|q|<1\][/mm] sein muss). Für
> [mm]\[\bruch{1}{1-z}\][/mm] habe ich die Reihe
>
> [mm]\[\bruch{1}{2}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{n}\][/mm]
> Wie zerlege ich [mm]\[\bruch{1}{1+z}\][/mm] richtig, ich verzweifle
> gerade daran.
>
Das brauchst Du nicht zerlegen.
> P.S.: eine Sache bereitet mir auch Kopfzerbrechen: Was ist
> das Residuum von [mm]\[\bruch{e^{z}}{(z^{2}-1)^{2}}\][/mm] bei
> [mm]\[z_{0}=1\]?[/mm] Habe schon mit Integral und Limes probiert,
> aber beides nicht funktioniert, Mathematica sagt 0. Wie
> rechne ich das nach (muss ich eine Laurentreihenentwicklung
> machen? eher nicht.)
Nun, z=1 ist eine doppelte Nullstelle des Nenners.
Daher muss das Residuum wie folgt berechnet werden:
[mm]\limes_{z \to 1}\bruch{d}{dz}\left( \ \left(z-1\right)^{2}*\bruch{e^{z}}{\left(z^{2}-1\right)^{2}} \ \right)[/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:31 So 27.05.2012 | Autor: | MaxPlanck |
Danke vielmals.
Laurentreihe lautet für [mm] \[0<|z+1|<2\] [/mm] also
[mm] \[f(z)=\bruch{1}{2}\left(\bruch{1}{1+z}+\bruch{1}{2}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{n}\right)\]
[/mm]
und für [mm] \[|z+1|>2\]
[/mm]
[mm] f(z)=\bruch{1}{2}\left(\bruch{1}{1+z}-\bruch{1}{1+z}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{-n}\right)\]
[/mm]
nicht wahr?
Residuum (nach mühsamer Rechnung, aber einleuchtender Rechnung):
0
, was auch immer das bedeutet.
Danke nochmals!!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:39 So 27.05.2012 | Autor: | MathePower |
Hallo MaxPlanck,
> Danke vielmals.
>
> Laurentreihe lautet für [mm]\[0<|z+1|<2\][/mm] also
>
> [mm]\[f(z)=\bruch{1}{2}\left(\bruch{1}{1+z}+\bruch{1}{2}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{n}\right)\][/mm]
> und für [mm]\[|z+1|>2\][/mm]
>
> [mm]f(z)=\bruch{1}{2}\left(\bruch{1}{1+z}-\bruch{1}{1+z}\summe_{n=0}^{\infty}\left(\bruch{z+1}{2}\right)^{-n}\right)\][/mm]
> nicht wahr?
>
Ja.
> Residuum (nach mühsamer Rechnung, aber einleuchtender
> Rechnung):
> 0
> , was auch immer das bedeutet.
>
> Danke nochmals!!
Gruss
MathePower
|
|
|
|