matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLaurentreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Laurentreihen
Laurentreihen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 06.04.2011
Autor: Vicky89

jetzt habe ich nochmal eine frage zu ein paar anderen funktionen.

[mm] f(x)=\bruch{sin(x)}{x^{5}} [/mm]
dazu schaue ich mir die reihenentwicklung von sinus an
[mm] sin(x)=\bruch{x}{1}-\bruch{x^{3}}{3!}+\bruch{x^{5}}{5!}+-... [/mm]
und teile schließlich alles durch [mm] x^{5}, [/mm] so dass ich auf
[mm] \bruch{1}{x^{4}}-\bruch{1}{3!x^{2}} [/mm] + 1 +-...
komme, oder?

so, wie is das jetzt bei exp(1/z)
ist das = [mm] \bruch{1}{x} [/mm] + 1 [mm] +\bruch{x}{2!} [/mm] ?
oder muss ich da anders rangehen?

und wie sieht es mit sin(cos(z)) aus?




        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Do 07.04.2011
Autor: fred97


> jetzt habe ich nochmal eine frage zu ein paar anderen
> funktionen.
>  
> [mm]f(x)=\bruch{sin(x)}{x^{5}}[/mm]
>  dazu schaue ich mir die reihenentwicklung von sinus an
>  
> [mm]sin(x)=\bruch{x}{1}-\bruch{x^{3}}{3!}+\bruch{x^{5}}{5!}+-...[/mm]
>  und teile schließlich alles durch [mm]x^{5},[/mm] so dass ich auf
>  [mm]\bruch{1}{x^{4}}-\bruch{1}{3!x^{2}}[/mm] + 1 +-...
>  komme, oder?

Ja


>  
> so, wie is das jetzt bei exp(1/z)
>  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?


Das ist Quatsch !

Es ist doch  [mm] e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+ [/mm] .....

Jetzt setze w=1/z

FRED

>  oder muss ich da anders rangehen?
>  
> und wie sieht es mit sin(cos(z)) aus?
>  


Bezug
                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Do 07.04.2011
Autor: Vicky89


> > so, wie is das jetzt bei exp(1/z)
>  >  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?
>  
>
> Das ist Quatsch !
>  
> Es ist doch  [mm]e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+[/mm]
> .....
>  
> Jetzt setze w=1/z


ok, das klingt logisch. das heißt [mm] 1+\bruch{1}{z}+\bruch{1}{2!z^{2}}+\bruch{1}{3!z^{3}}+..... [/mm] ?


[/mm]

>  
> FRED
>  
> >  oder muss ich da anders rangehen?

>  >  
> > und wie sieht es mit sin(cos(z)) aus?

aber wie ist es hier?

muss ich da für die reihenentwicklung von sin, für z immer die komplette reihenentwicklugn des cos einsetzen??


habe jetzt nochmal einige gerechnet. bei den einfacheren klappt es ganz gut. aber wie ist es bei [mm] sin^{2} [/mm] (z) habe das ergebnis schon gesehen, weiß aber nicht wie ich auf diese reihe komme...

Bezug
                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,

> > > so, wie is das jetzt bei exp(1/z)
>  >  >  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?
>  >  
> >
> > Das ist Quatsch !
>  >  
> > Es ist doch  [mm]e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+[/mm]
> > .....
>  >  
> > Jetzt setze w=1/z
>  
>
> ok, das klingt logisch. das heißt
> [mm]1+\bruch{1}{z}+\bruch{1}{2!z^{2}}+\bruch{1}{3!z^{3}}+.....[/mm]
> ?
>


Ja. [ok]


>
> [/mm]
> >  

> > FRED
>  >  
> > >  oder muss ich da anders rangehen?

>  >  >  
> > > und wie sieht es mit sin(cos(z)) aus?
>  
> aber wie ist es hier?
>  
> muss ich da für die reihenentwicklung von sin, für z
> immer die komplette reihenentwicklugn des cos einsetzen??


Das kommt darauf an, bis zu welcher Potenz
die Reihe entwickelt werden soll.


>  
> habe jetzt nochmal einige gerechnet. bei den einfacheren
> klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z) habe
> das ergebnis schon gesehen, weiß aber nicht wie ich auf
> diese reihe komme...


Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit sich selbst.


Gruss
MathePower

Bezug
                                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Do 07.04.2011
Autor: Vicky89


> > > FRED
>  >  >

> > > >  oder muss ich da anders rangehen?

>  >  >  >

> > > > und wie sieht es mit sin(cos(z)) aus?
>  >

> > aber wie ist es hier?
>  >

> > muss ich da für die reihenentwicklung von sin, für z
> > immer die komplette reihenentwicklugn des cos einsetzen??
>

>

> Das kommt darauf an, bis zu welcher Potenz
>  die Reihe entwickelt werden soll.
>

also eigentlich geht es bei den aufgaben darum, dass residuum zu berechnen...


> >
> > habe jetzt nochmal einige gerechnet. bei den einfacheren
> > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z) habe
> > das ergebnis schon gesehen, weiß aber nicht wie ich auf
> > diese reihe komme...

>
>

> Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit sich
> selbst.
>

das habe ich versucht, komme aber nicht auf das richtige ergebnis.

sin(z) = z - [mm] \bruch{z^{3}}{3!} [/mm] + [mm] \bruch{z^{5}}{5!}-+.... [/mm]


dann müsste ich jetzt doch rechnen

[mm] z*z=z^{2} [/mm]
z*- [mm] \bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!} [/mm]
[mm] z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!} [/mm]

und ich hätte
[mm] sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+.... [/mm]

aber laut wolframalpha müssteich auf

[mm] sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+.... [/mm]
kommen.

wo liegt denn mein fehler?



danke für die hilfe


Bezug
                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,


>
> > > > FRED
>  >  >  >

> > > > >  oder muss ich da anders rangehen?

>  >  >  >  >

> > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >

> > > aber wie ist es hier?
>  >  >

> > > muss ich da für die reihenentwicklung von sin, für z
>  > > immer die komplette reihenentwicklugn des cos

> einsetzen??
>  >

> >
>  > Das kommt darauf an, bis zu welcher Potenz

>  >  die Reihe entwickelt werden soll.
>  >

>
> also eigentlich geht es bei den aufgaben darum, dass
> residuum zu berechnen...
>  

Dann  musst Du das wohl so machen.

Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um z=0 entwickelt,
so stellst Du fest, daß das Residuum 0 ist.


>
> > >
> > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> habe
>  > > das ergebnis schon gesehen, weiß aber nicht wie ich

> auf
>  > > diese reihe komme...

>  >
>  >
>  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> sich
>  > selbst.

>  >

> das habe ich versucht, komme aber nicht auf das richtige
> ergebnis.
>  
> sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  
>
> dann müsste ich jetzt doch rechnen
>  
> [mm]z*z=z^{2}[/mm]
>  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  
> [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  
> und ich hätte
>  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]
>  
> aber laut wolframalpha müssteich auf
>  
> [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> kommen.
>  
> wo liegt denn mein fehler?
>  


Hier musst Du schon rechnen:

[mm]\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)*\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)[/mm]

Jedes Glied des ersten Faktors mit jedem Glied
des zweiten Faktors multiplizieren.


>
>
> danke für die hilfe
>  


Gruss
MathePower

Bezug
                                                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 07.04.2011
Autor: Vicky89


> Hallo Vicky89,
>  
>
> >
> > > > > FRED
>  >  >  >  >

> > > > > >  oder muss ich da anders rangehen?

>  >  >  >  >  >

> > > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >  >

> > > > aber wie ist es hier?
>  >  >  >

> > > > muss ich da für die reihenentwicklung von sin, für z
>  >  > > immer die komplette reihenentwicklugn des cos

> > einsetzen??
>  >  >

> > >
>  >  > Das kommt darauf an, bis zu welcher Potenz

>  >  >  die Reihe entwickelt werden soll.
>  >  >

> >
> > also eigentlich geht es bei den aufgaben darum, dass
> > residuum zu berechnen...
>  >  
>
> Dann  musst Du das wohl so machen.
>  



> Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> z=0 entwickelt,
>  so stellst Du fest, daß das Residuum 0 ist.
>  

muss man hier dazu auch wirklich die reihe entwicklen? oder geht das auch anders?


> >
> > > >
> > > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  >  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> > habe
>  >  > > das ergebnis schon gesehen, weiß aber nicht wie

> ich
> > auf
>  >  > > diese reihe komme...

>  >  >
>  >  >
>  >  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> > sich
>  >  > selbst.

>  >  >

> > das habe ich versucht, komme aber nicht auf das richtige
> > ergebnis.
>  >  
> > sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  >  
> >
> > dann müsste ich jetzt doch rechnen
>  >  
> > [mm]z*z=z^{2}[/mm]
>  >  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  >  
> > [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  >  
> > und ich hätte
>  >  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]
>  
> >  

> > aber laut wolframalpha müssteich auf
>  >  
> > [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> >  

> > kommen.
>  >  
> > wo liegt denn mein fehler?
>  >  
>
>
> Hier musst Du schon rechnen:
>  
> [mm]\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)*\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)[/mm]
>  
> Jedes Glied des ersten Faktors mit jedem Glied
>  des zweiten Faktors multiplizieren.
>  
>

das war mir schon bewusst. aber ich habe vergessen, dass es am ende ja mehrere glieder gibt, die dann z.b. [mm] z^{4} [/mm] im zähler haben.
aber ich habe es jetzt verstanden, ausprobiert und es stimmt =)
hat die funktion dann kein residuum?


> >
> > danke für die hilfe
>  >  
>
>
> Gruss
>  MathePower


Bezug
                                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,

>
> > Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> > z=0 entwickelt,
>  >  so stellst Du fest, daß das Residuum 0 ist.
>  >  
>
> muss man hier dazu auch wirklich die reihe entwicklen? oder
> geht das auch anders?
>  


Einfacher geht das mit dem []Cauchyschen Integralsatz

  
Gruss
MathePower

Bezug
                                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 07.04.2011
Autor: fred97


>
>
> > Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> > z=0 entwickelt,
>  >  so stellst Du fest, daß das Residuum 0 ist.
>  >  
>
> muss man hier dazu auch wirklich die reihe entwicklen? oder
> geht das auch anders?


Ja, durch ein wenig nachdenken.

Die Funktion [mm]f(z)=\sin\left(\cos\left(z\right)\right)[/mm]  ist eine ganze Funktion, hat also eine auf ganz [mm] \IC [/mm] konv. Potenzreihenentwicklung um 0 (die man für obige Frage gar nicht kennen muß).

Dh.:    Potenzreihe von f um 0 = Laurentreihe um 0

Damit sind alle Koeffizienten [mm] a_{-n} [/mm] im Hauptteil der Laurentreihe   =0, also auch:

                   [mm] a_{-1}=0 [/mm]

FRED


Bezug
                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Do 07.04.2011
Autor: fred97


>
> > > > FRED
>  >  >  >

> > > > >  oder muss ich da anders rangehen?

>  >  >  >  >

> > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >

> > > aber wie ist es hier?
>  >  >

> > > muss ich da für die reihenentwicklung von sin, für z
>  > > immer die komplette reihenentwicklugn des cos

> einsetzen??
>  >

> >
>  > Das kommt darauf an, bis zu welcher Potenz

>  >  die Reihe entwickelt werden soll.
>  >

>
> also eigentlich geht es bei den aufgaben darum, dass
> residuum zu berechnen...
>  
>
> > >
> > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> habe
>  > > das ergebnis schon gesehen, weiß aber nicht wie ich

> auf
>  > > diese reihe komme...

>  >
>  >
>  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> sich
>  > selbst.

>  >

> das habe ich versucht, komme aber nicht auf das richtige
> ergebnis.
>  
> sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  
>
> dann müsste ich jetzt doch rechnen
>  
> [mm]z*z=z^{2}[/mm]
>  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  
> [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  
> und ich hätte
>  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]



Das ist doch Blödsinn ! Was Du berechnet hast ist nicht [mm] \sin^2(z) [/mm] sondern $z* [mm] \sin(z)$ [/mm]

>  
> aber laut wolframalpha müssteich auf
>  
> [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> kommen.
>  
> wo liegt denn mein fehler?

S.o.

Tipp: Cauchyprodukt

FRED

>  
>
>
> danke für die hilfe
>  


Bezug
                                                
Bezug
Laurentreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Do 07.04.2011
Autor: Vicky89

dake für die hilfe.
den richtigen ansatz hatte ich schon. ich wusste, dass ich das alles miteinander multiplizieren muss. hatte das aber erstmal nur für z angefangen. aber wie gesgat, ist mir aufgefallen, wie ich es richtig machen muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]