Lebensdauer Neutron < Atom- und Kernphysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Die Lebensdauer eines Neutrons beträgt etwa [mm] \tau=900s.
[/mm]
Man betrachte einen Elektronen-Strahl.
Nach der Zeit [mm] \tau [/mm] ist die Zahl der Neutronen auf 1/e gesunken, nach [mm] \tau \cdot ln(2)[/mm] auf die Hälfte.
Wieso?
|
Hallo,
also ich habe diese Aussage gefunden und frage mich, ob das Physiker-Allgemeinwissen ist und man das nur empirisch gefunden hat, oder ob man das irgendwie herleiten kann.
Wenn ich weiß, dass nach [mm] \tau [/mm] nur noch 1/e vorhanden sind, wie komme ich dann auf den Zeitpunkt, nach dem nur noch die Hälfte vorhanden ist?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:34 So 28.03.2010 | Autor: | Infinit |
Hallo T_sleeper,
das liegt an der e-Funktion. Generell gilt für die Anzahl der Teilchen N zu einem bestimmten Zeitpunkt t
$$ N(t) = [mm] N_A e^{- \bruch{t}{\tau}} \, [/mm] ,$$ wobei [mm] N_A [/mm] die Anzahl der Teilchen am Anfang, also zum Zeitpunkt t = 0 ist. Was Du jetzt suchst, ist der Zeitpunkt zu dem nur noch die Hälfte der Teilchen da ist, nennen wir ihn [mm] t_{halb} [/mm]. Dann gilt doch die Gleichung
$$ [mm] \bruch{N_A}{2} [/mm] = [mm] N_A e^{- \bruch{t_{halb}}{\tau}} [/mm] $$ oder nach einmal Logarithmieren
$$ [mm] \ln (\bruch{1}{2}) [/mm] = - [mm] \bruch{t_{halb}}{\tau}\, [/mm] . $$ Das ist aber auch
$$ - [mm] \ln [/mm] 2 = - [mm] \bruch{t_{halb}}{\tau} [/mm] $$ und hieraus bekommst Du sofort
$$ [mm] t_{halb} [/mm] = [mm] \tau \ln [/mm] 2 [mm] \, [/mm] . $$
Viele Grüße,
Infinit
|
|
|
|