matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLebesgue-Integral-Cantor Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Lebesgue-Integral-Cantor Menge
Lebesgue-Integral-Cantor Menge < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral-Cantor Menge: Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:39 Mo 14.12.2009
Autor: babapapa

Aufgabe
Sei f definiert auf [0,1] wie folgt: f(x) = 0, falls x ein Element der Cantor Menge ist, und f(x) = n au jedem bei der Konstruktion der Cantor-Menge entfernten Intervall der Länge [mm] \bruch{1}{3^n} [/mm]

Hallo!

Ich soll nun also das Lebesgue Integral berechnen.
Ich habe mir mal die Cantor-Menge konstruiert, damit ich überhaupt verstehe um was es geht :)

Also ich Teile jeden Intervall durch 3 - ergo ich entferne offene Intervalle.

Im ersten Schritt wird also (1/3, 2/3) entfernt.
Im zweiten Schritt (1/9,2/9) und (7/9,8/9)... usw

gut, laut angabe weiß ich nun, dass der Funktionswert auf allen entfernten intervallen n ist und bei den Randpunkten (Cantor Menge) 0.

Ich tue mich hier unheimlich schwer bei der Argumentation, da ich Lebesgue Integrale und die Maßtheorie dahinter noch nicht ganz durchblicke.

Außerdem weiß ich, dass die Cantor-Menge überabzählbar ist und nirgends dicht - ich kann damit also nicht [mm] \IR [/mm] konstruieren.

Wie argumentiere ich hier richtig?

Vielen Dank für jede Hilfe!

lg
Babapapa

[mm] \integral_{0}^{n}{2^{n-1} * \bruch{^}{3^n} dy} [/mm]


        
Bezug
Lebesgue-Integral-Cantor Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 16.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lebesgue-Integral-Cantor Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mi 16.12.2009
Autor: Baumkind

Hi. Kommt zwar einen bisschen spät aber:
Du könntest dir überlegen, dass die Cantormenge eine Nullmenge (N) ist.
Damit lässt sich dann, unter Beachtung von:
\int_\Omega f \, \mathrm d\mu = \int_{\Omega \setminus N}f\, \mathrm d\mu + \int_N f \, \mathrm d\mu = \int_{\Omega \setminus N}f \, \mathrm d\mu
relativ leicht die Aufgabe lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]