matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieLebesgue-Maß von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Lebesgue-Maß von Mengen
Lebesgue-Maß von Mengen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Maß von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Do 12.10.2023
Autor: Euler123

Aufgabe
Bestimmen Sie das zweidimensionale Lebesgue-Maß der folgenden Mengen und Begründen Sie jeden Rechenschritt genau:
a) [mm] M_{1}=([0,1] \times[0,2]) \cup([1,3] \times[1,4]) [/mm]
b) [mm] M_{2}=([2,7] \times[1,6]) \backslash([3,6] \times[3,4]) [/mm]

Zum Lebesgue-Maß habe ich folgende Definition gegeben:
Das wichtigste Maß auf [mm] \mathbb{R} [/mm] ist das eindimensionale Lebesgue-Maß:
[mm] \mathcal{L}^{1}(A):=\inf \left\{\sum \limits_{i=1}^{\infty}\left|I_{i}\right|: \quad A \subset \bigcup_{i=1}^{\infty} I_{i}, \quad I_{i}\right. [/mm] kompaktes, nichtleeres Intervall für [mm] \left.i \in \mathbb{N}\right\} [/mm]
Dabei ist [mm] \left|I_{i}\right|=b_{i}-a_{i}, [/mm] falls [mm] I_{i}=\left[a_{i}, b_{i}\right] [/mm] mit [mm] b_{i} \geq a_{i} [/mm] die elementare Länge.

Darunter kann ich mir jetzt aber nicht wirklich etwas vorstellen - wie komme ich davon abgesehen von der Eindimensionalität zur Zweidimensionalität und Berechne die Menge.

Wenn mir das jemand anhand eines der gegeben Beispiele erläutern könnte, wäre ich sehr dankbar.

"Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt"

        
Bezug
Lebesgue-Maß von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 13.10.2023
Autor: Gonozal_IX

Hiho,

> Dabei ist [mm]\left|I_{i}\right|=b_{i}-a_{i},[/mm] falls
> [mm]I_{i}=\left[a_{i}, b_{i}\right][/mm] mit [mm]b_{i} \geq a_{i}[/mm] die elementare Länge.
>  
> Darunter kann ich mir jetzt aber nicht wirklich etwas vorstellen

Das Lebesgue-Maß entspricht anschaulich dem, wie du Mengen intuitiv messen würdest.
D.h. im Eindimensionalen misst es die Länge, im zweidimensionalen die Fläche, im dreidimensionalen das Volumen einer Menge.

> wie komme ich davon abgesehen von der Eindimensionalität zur Zweidimensionalität und Berechne die Menge.

Da gibt es mehrere Möglichkeiten, die ihr garantiert hattet… dein ganzes Posting wirkt ein bisschen so, wie: Ich schaue mal die ersten Seiten des Themas an und hoffe damit die Aufgaben lösen zu können…

Vom Ein- zum Mehrdimensionalen kommst du entweder, indem ihr die Definition des Lebesgue-Maßes für höhere Dimensionen eingeführt habt, über die Definition von Produktmaßen oder über die Vervollständigung des Borelmaßes… das kannst aber nur du uns verraten.

Und so wie die Aufgabe gestellt ist, vermute ich dann noch, dass ihr Rechenregeln für das Lebesgue-Maß hergeleitet habt, und die sollst du vermutlich anwenden…

Gruß,
Gono



Bezug
                
Bezug
Lebesgue-Maß von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Fr 13.10.2023
Autor: Euler123

Hallo Gono,
Vielen Dank für deine Antwort.
Nachdem das Lebesgue-Maß im zweidimensionalem anschaulich einer Fläche entspricht müsste also ein äußeres Maß auf [mm] R^n [/mm] gesucht sein, dass auf geometrischen Körpern den geometrische Inhalt als Wert hat (im [mm] R^2 [/mm] also das Produkt der Kantenlängen)?
Nachdem mir die entsprechenden Rechenregeln nicht bekannt sind und diese auch nicht in unserem Skript stehen (ich habe 7 Seiten über das Lebesgue-Maß über Eigenschaften, [mm] L^N-Nullmengen, [/mm] Eindeutigkeit und Abbildungseigenschaften von [mm] L^N [/mm] (aber keine Rechenregeln)?
Über einen Tipp zur konkreten Berechnung wäre ich also äußerst dankbar - nachdem ich mit dem Lebesgue-Maß bisher noch nichts zu tun hatte, bin ich diesbezüglich leider immer noch sehr ratlos :)
LG
Euler123

Bezug
                        
Bezug
Lebesgue-Maß von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 14.10.2023
Autor: Gonozal_IX

Hiho,

du hattest dann bestimmt Rechenregeln von Maßen im Allgemeinen, die gelten dann aber insbesondere für das Lebesgue-Maß.

> Nachdem das Lebesgue-Maß im zweidimensionalem anschaulich
> einer Fläche entspricht müsste also ein äußeres Maß
> auf [mm]R^n[/mm] gesucht sein, dass auf geometrischen Körpern den
> geometrische Inhalt als Wert hat (im [mm]R^2[/mm] also das Produkt
> der Kantenlängen)?

Für Quader stimmt das…

Ergo: Zerlege deine zu berechnenden Mengen in (disjunkte) Quader, wende die Rechenregeln für Maße für disjunkte Mengen an und bestimme dann das Lebesgue-Maß der Quader als Produkt der Kantenlängen…

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]