Lebesgue-Stieltjes-Integral < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:33 Do 03.06.2010 | Autor: | gfm |
Hallo
Mal angenommen ein rechtsstetiges nicht fallendes F auf [mm] \IR [/mm] habe bei x=c einen endlichen Sprung der Höhe h und eine meßbare, beschränke und integrierbare Funktion g ist bei x=c unstetig.
Welchen Anteil in [mm] \integral [/mm] gdF gibt es dann an der Sprungstelle? Wenn g dort stetig ist, ist das g(c)*h. Was gilt aber, wenn g an x=c nicht stetig ist, also dort selber (endlich) springt?
LG
Nur hier gepostet...
gfm
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:29 Do 03.06.2010 | Autor: | dormant |
Hi!
> Hallo
>
> Mal angenommen ein rechtsstetiges nicht fallendes F auf [mm]\IR[/mm]
> habe bei x=c einen endlichen Sprung der Höhe h und eine
> meßbare, beschränke und integrierbare Funktion g ist bei
> x=c unstetig.
Das Problem ist, dass g sehr unstetig sein kann. Z.B. g kann 1/(x-1/2) sein und bei 1/2 hast du einen zu großen Sprungen, den du durch ein sprungstetiges F nicht retten kannst (ansonsten wäre das g bei 1/2 stetig fortsetzbar).
> Welchen Anteil in [mm]\integral[/mm] gdF gibt es dann an der
> Sprungstelle? Wenn g dort stetig ist, ist das g(c)*h. Was
> gilt aber, wenn g an x=c nicht stetig ist, also dort selber
> (endlich) springt?
Somit kann man den Sprung nur dann bewerten, wenn g bei c nur sprungstetig ist. Für allgemeine unstetige Funktionen geht's nicht. Und ich glaube g muss auch rechtsstetig sein. Dann hast du wieder lim [mm] g(x_n)h, x_n->c [/mm] als Sprung.
> LG
>
> Nur hier gepostet...
>
> gfm
>
>
Gruß,
dormant
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 13:23 Do 03.06.2010 | Autor: | gfm |
> Hi!
>
> > Hallo
> >
> > Mal angenommen ein rechtsstetiges nicht fallendes F auf [mm]\IR[/mm]
> > habe bei x=c einen endlichen Sprung der Höhe h und eine
> > meßbare, beschränke und integrierbare Funktion g ist bei
> > x=c unstetig.
>
> Das Problem ist, dass g sehr unstetig sein kann. Z.B. g
> kann 1/(x-1/2) sein und bei 1/2 hast du einen zu großen
> Sprungen, den du durch ein sprungstetiges F nicht retten
> kannst (ansonsten wäre das g bei 1/2 stetig fortsetzbar).
Dein Beispiel ist nicht beschränkt.
>
> > Welchen Anteil in [mm]\integral[/mm] gdF gibt es dann an der
> > Sprungstelle? Wenn g dort stetig ist, ist das g(c)*h. Was
> > gilt aber, wenn g an x=c nicht stetig ist, also dort selber
> > (endlich) springt?
>
> Somit kann man den Sprung nur dann bewerten, wenn g bei c
> nur sprungstetig ist. Für allgemeine unstetige Funktionen
> geht's nicht. Und ich glaube g muss auch rechtsstetig sein.
Na, das kann glaube ich nicht. Im Rahmen der Maß/Integrationstheorie ist doch F ein Maß auf der rellen Achse, mit welchem man meßbare (also nicht notwendig stetige) Funktionen integrieren kann, oder?
Dem Sprung der Höhe h bei x=c sollte das Dirac-Maß [mm] \delta_c(A):=h*1_A(c) [/mm] entsprechen.
Gilt hier nicht [mm] \integral gd\delta_c=g(c)*h?
[/mm]
Reicht vielleicht einfach nur, dass [mm] |g(c)|<\infty, [/mm] damit das Integral über die Sprungstelle hinweg von dieser einen endlichen Anteil mit bekommt?
LG
gfm
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Sa 05.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|