matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieLebesque-Nullmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Lebesque-Nullmenge
Lebesque-Nullmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesque-Nullmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Mi 16.11.2011
Autor: m0ppel

Aufgabe
Wir betrachten [mm] \IR [/mm] mit dem Lebesgue-Maß [mm] \mu. [/mm] Nullmengen seien im Folgenden [mm] \mu-Nullmengen. [/mm]
Beweisen oder widerlegen Sie:
(i) Eine abzählbare Vereinigung von Nullmengen ist eine Nullmenge.
(ii) Eine beliebige Vereinigung von Nullmengen ist eine Nullmenge.
(iii) Eine nichtleere offene Menge ist nie eine Nullmenge.
(iv) Eine nichtleere abgeschlossene Teilmenge ist nie eine Nullmenge.

Guten Abend,
Ich sitzte heute schon eine Weile an den Analysis Aufgaben und bin jetzt endlich bei der letzten angekommen.
Den ersten Teil der Aufgabe habe ich erledigt.
Aber mir fällt einfach kein Gegenbeispiel für (ii) ein.
Wäre lieb, wenn mir da einer helfen könnte.
Danke schon mal und
Liebe Grüße m0ppel

        
Bezug
Lebesque-Nullmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 16.11.2011
Autor: Micha

Hallo m0ppel!

Als Gegenbeispiel für ii) kannst du ja mal ein Intervall wie z.B. (0,1) betrachten. Das Intervall ist die Vereinigung von allen einpunktigen Teilmengen {x} für 0<x<1.

Gruß Micha ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]