Legendre-Symbol < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:46 Sa 10.12.2011 | Autor: | briddi |
Aufgabe | Berechne [mm] \vektor{11 \\ 19} [/mm] (das soll das Legendre-Symbol sein) auf verschiedene Weisen (Gaußsches Lemma, Ergänzungssätze, Reziprozitätsgesetz). |
Hallo,
ich habe bereits [mm] \vektor{11 \\ 19} [/mm] über das Gaußsche Lemma bestimmt, es kommt 1 raus.
Des Weiteren habe ich wie folgt umgeformt:
[mm] \vektor{11 \\ 19}=(-1)^{\bruch{11-1}{2}*\bruch{19-1}{2}}*\vektor{19 \\ 11} [/mm] (Reziprozitätsgesetz)
= [mm] -1*\vektor{8 \\ 11}=-1*\vektor{2 \\ 11}*\vektor{2 \\ 11}*\vektor{2 \\ 11}=-1*((-1)^{\bruch{121-1}{8}})^3 [/mm] (Ergänzungssatz)
[mm] =-1*(-1)^{45}=1
[/mm]
Nun aber meine Frage, ich sollte das auf drei verschiedene Weisen bestimmen, ich habe aber bei meiner Umformung bereits sowohl einen Ergänzungssatz als auch das Reziprozitätsgesetz angewendet. Ich bin der Meinung, dass man die Ergänzungssätze nicht anwenden kann, wenn man das Reziprozitätsgesetz vorher nicht anwendet, da im "Zähler" weder eine -1 noch eine 2 steht. Ebenso kann man das nicht weiter ausrechnen ohne den Ergänzungssatz zu verwenden, da durch die Umformung eben die 2 im Zähler entsteht.
Den anderen Ergänzungssatz bekomme ich bei meiner Berechnung überhaupt nicht hinein.
Seh ich das falsch oder ist die Aufgabe nur unglücklich formuliert?
Danke,
briddi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:34 So 11.12.2011 | Autor: | felixf |
Moin!
> Berechne [mm]\vektor{11 \\ 19}[/mm] (das soll das Legendre-Symbol
> sein) auf verschiedene Weisen (Gaußsches Lemma,
> Ergänzungssätze, Reziprozitätsgesetz).
>
> ich habe bereits [mm]\vektor{11 \\ 19}[/mm] über das Gaußsche
> Lemma bestimmt, es kommt 1 raus.
> Des Weiteren habe ich wie folgt umgeformt:
> [mm]\vektor{11 \\ 19}=(-1)^{\bruch{11-1}{2}*\bruch{19-1}{2}}*\vektor{19 \\ 11}[/mm]
> (Reziprozitätsgesetz)
> = [mm]-1*\vektor{8 \\ 11}=-1*\vektor{2 \\ 11}*\vektor{2 \\ 11}*\vektor{2 \\ 11}=-1*((-1)^{\bruch{121-1}{8}})^3[/mm]
> (Ergänzungssatz)
> [mm]=-1*(-1)^{45}=1[/mm]
>
> Nun aber meine Frage, ich sollte das auf drei verschiedene
> Weisen bestimmen, ich habe aber bei meiner Umformung
> bereits sowohl einen Ergänzungssatz als auch das
> Reziprozitätsgesetz angewendet.
Was sich auch nicht verhindern laesst.
> Ich bin der Meinung, dass
> man die Ergänzungssätze nicht anwenden kann, wenn man das
> Reziprozitätsgesetz vorher nicht anwendet, da im "Zähler"
> weder eine -1 noch eine 2 steht.
Ja.
> Ebenso kann man das nicht
> weiter ausrechnen ohne den Ergänzungssatz zu verwenden, da
> durch die Umformung eben die 2 im Zähler entsteht.
Genau.
> Den anderen Ergänzungssatz bekomme ich bei meiner
> Berechnung überhaupt nicht hinein.
Du kannst [mm] $(\frac{8}{11})$ [/mm] auch als [mm] $(\frac{8-11}{11}) [/mm] = [mm] (\frac{-3}{11}) [/mm] = [mm] (\frac{-1}{11}) \cdot (\frac{3}{11})$ [/mm] schreiben.
Damit haettest du auch einen dritten Weg.
LG Felix
|
|
|
|