matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLeibniz Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Leibniz Kriterium
Leibniz Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Fr 11.01.2013
Autor: piriyaie

Aufgabe
[mm] \summe_{n=1}^{\infty} \bruch{(n+1)^{n-1}}{(-n)^{n}} [/mm]


Hallo,

ich möchte wissen ob die obige Reihe konvergiert oder divergiert.

also ich weiß, dass die reihe alternierend ist. und ich weiß auch, dass ich hier das leibniskriterium anwenden muss. dieses kriterium besagt, dass eine reihe dessen folge eine nullfolge ist also gegen null konvergiert und monoton fallend ist (also der Betrag der Folge [mm] |a_{n}|) [/mm] konvergent ist.

allerdings weiß ich nicht wie ich hier die monotonie nachweisen soll und ich weiß nicht wie ich hier zeigen soll, dass die folge gegen 0 konvergiert.

danke schonmal.

grüße
ali

        
Bezug
Leibniz Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Sa 12.01.2013
Autor: abakus


> [mm]\summe_{n=1}^{\infty} \bruch{(n+1)^{n-1}}{(-n)^{n}}[/mm]
>  
> Hallo,
>  
> ich möchte wissen ob die obige Reihe konvergiert oder
> divergiert.
>  
> also ich weiß, dass die reihe alternierend ist. und ich
> weiß auch, dass ich hier das leibniskriterium anwenden
> muss. dieses kriterium besagt, dass eine reihe dessen folge
> eine nullfolge ist also gegen null konvergiert und monoton
> fallend ist (also der Betrag der Folge [mm]|a_{n}|)[/mm] konvergent
> ist.
>  
> allerdings weiß ich nicht wie ich hier die monotonie
> nachweisen soll und ich weiß nicht wie ich hier zeigen
> soll, dass die folge gegen 0 konvergiert.
>  
> danke schonmal.
>  
> grüße
>  ali

Hallo,
[mm] \bruch{(n+1)^{n-1}}{(-n)^{n}}=\bruch{(n+1)^{n-1}}{(-n)^{n-1}}*\bruch{1}{-n}=(-1)^{n-1}*\bruch{(n+1)^{n-1}}{n^{n-1}}*\bruch{1}{-n}=(-1)^{n-1}*(\bruch{n+1}{n})^{n-1}*\bruch{1}{-n}[/mm]
Das geht irgendwie gegen [mm]\pm\frac{e}{n}[/mm].
Gruß ABAKUS



Bezug
                
Bezug
Leibniz Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 12.01.2013
Autor: piriyaie

danke abakus.

aber ich verstehe deine rechenschritte nicht so ganz. vor allem verstehe ich nicht wie ich da selbst drauf kommen soll und der klausur...

kann mir jemand eine einfachere antwort geben und mir erklären wie ich in der klausur bei solch einer aufgabe vorgehen soll?

danke schonmmal.

grüße
ali

Bezug
                        
Bezug
Leibniz Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 12.01.2013
Autor: leduart

Hallo
du hast im Z hoch (n-1) im N hoch n
also es ist einfacher wenn oben und unten der gleiche exponent stehen. dafuer 2 Wege:
a)1/n ausklammern und den Rest hoch n, der Wegim letzten post
oder mit (1+n) erweitern, dann hast du [mm] (\bruch{1+n}{n})^n*\bruch{1}{n+1} [/mm]
in beiden Faellen kann man sehen,dass es eine Nullfolge ist.
und vor ner Klausur hat man ja ne Menge derartige Dinge geuebt und alle solche Tricks verinnerlicht!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]