matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperLeitkoeffizienten, Ideale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Leitkoeffizienten, Ideale
Leitkoeffizienten, Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leitkoeffizienten, Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Do 23.10.2008
Autor: Brazzo

Aufgabe
Sei R ein Ring und [mm] \mathcal{A} [/mm] ein Ideal in R[x], lc(f) der Leitkoeffizient von f [mm] \in [/mm] R[x].
Zu zeigen ist: [mm] lc(\mathcal{A}) [/mm] := [mm] \{ lc(f) | 0 \neq f \in \mathcal{A} \} \cup \{0\} [/mm] ist ein Ideal in R

Hallo,
ich habe wider Erwarten tatsächlich ein Problem mit obiger Aufgabe.

2 der 3 Idealeigenschaften sind leicht gezeigt, doch bei der Abgeschlossenheit bzgl. Addition hapert es.

Man betrachtet also 2 Elemente a,b aus [mm] lc(\mathcal{A}). [/mm] Dann muss es f,g [mm] \in \mathcal{A} [/mm] geben mit a=lc(f) und b=lc(g). Zu zeigen ist also, dass es ein h [mm] \in \mathcal{A} [/mm] gibt mit lc(h)=lc(f)+lc(g). Das ist trivial, wenn a oder b 0 sind oder wenn f und g denselben Grad haben(Dann ist h=f+g [mm] \in \mathcal{A}). [/mm] Doch was ist, wenn f und g unterschiedlichen Grades sind? Oder muss ich diesen Fall aus Gründen, die mir nicht einfallen gar nicht betrachten?

Würde mich über Hinweise freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Leitkoeffizienten, Ideale: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:42 Do 23.10.2008
Autor: Gnometech

Hallo,

wenn $f$ und $g$ verschiedenen Grad haben, also o.B.d.A. [mm] $\deg [/mm] f = n > [mm] \deg [/mm] g = m$, dann betrachte einfach $g' = g [mm] \cdot x^{n - m}$. [/mm] Wegen der Idealeigenschaft gilt $g' [mm] \in \mathcal{A}$ [/mm] und der Leitkoeffizient ändert sich nicht.

Liebe Grüße,
Lars

Bezug
                
Bezug
Leitkoeffizienten, Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 23.10.2008
Autor: Brazzo

Ich hab ja fast befürchtet, dass die Lösung so offensichtlich ist und ich nur ein Riesen-Brett vorm Kopf habe...

Vielen Dank jedenfalls!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]