matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLemniskate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Lemniskate
Lemniskate < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemniskate: Punkte Horizontalen Tangenten
Status: (Frage) beantwortet Status 
Datum: 19:07 Fr 25.03.2005
Autor: Toxi

Hallo!!(Viel spass dem der das ließt)!
Ich soll die Punkte der Horizontalen Tangenten berechnen von einer Lemniskate mit der Gleichung [mm] (x^2+y^2)^2- 2(x^2-y^2)=0. [/mm]

Ich habe die Funktion nach x und y Abgeleitet und dann denn Satz f´(x-Null)= - F(x)/ F(y) verwendet und an dieser Stelle habe ich versucht die Nullstellen zu finden aber es funktioniert nicht weil ich keine Ergebnisse bekomme die logisch sind! Meine Ableitung nach x lautet [mm] F(x)=4x^3+4xy^2-4x [/mm]  und meine Ableitung nach y laute [mm] F(y)=4y^3+4yx^2+4y! [/mm] Jetzt habe ich die Gleichungen 0 gesetzt und probiert über ein Lösungssystem y oder x zu bestimmen was aber nicht klappte!
Kann mir jemand helfen und mir sagen wo ich denn Fehler gemacht habe?
Ich habe mir die Funktion zeichnen lassen und da kann man erkennen dass der y-Wert für die Punkte +1/2 und -1/2  sein muss aber die x-Werte kann man nicht ablesen!Ich weiß dass die erste Ableitung denn Anstieg an einem Punkte an einer Differenzierbaren Funktion ist und bei Horizontalen Punkten muss der Anstieg 0 sein!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.mathematisch.de

        
Bezug
Lemniskate: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:21 Fr 25.03.2005
Autor: MathePower

Hallo,

die Bedingung  für Extremstellen von unentwickelten Funktionen [mm]f\left( {x,\;y} \right)\; = \;0[/mm] lauten:

[mm]f_{x} \; = \;0,\;f_{y} \; \ne \;0[/mm]

Löse zunächst mal die Gleichung [mm]f_{x} \; = \;0[/mm] auf

Es gilt dann für [mm]f_{x}[/mm]:

[mm]\begin{gathered} f_{x} \; = \;4\;x\;\left( {x^{2} \; + \;y^{2} \; - \;1} \right)\; = \;0 \hfill \\ \Leftrightarrow \;x\; = \;0\; \vee \;x^{2} \; + \;y^{2} \; = \;1 \hfill \\ \end{gathered} [/mm]

Die Bedingungen werden in f(x,y) = 0 eingesetzt. Dies liefert dann eine Gleichung in einer Variablen.

Nun ist noch [mm]f_{y}[/mm] zu untersuchen:

[mm]f_{y} \; = \;4\;y\;\left( {x^2 \; + \;y^2 \; + \;1} \right)[/mm]

Ist [mm]f_{x} \; = \;f_{y} \; = \;0[/mm] so handelt es sich um einen sogenannten kritischen Punkt, der gesondert betrachtet werden muss (Satz von Morse).

Gruß
MathePower




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]