Likelihood-Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:46 Sa 10.07.2010 | Autor: | Hanz |
Hallo,
also ich habe bei einer Aufgabe ein Problem, und zwar:
"Ein Zufallsexperiment, in dem ein Ereignis A die Wahrscheinlichkeit [mm] \theta [/mm] hat, wird n-mal unabhängig wiederholt; [mm] \theta [/mm] ist zu schätzen. Schreiben wir 1 für das Eintreten von A und sonst 0, so sind die gewonnen Daten ein Element von [mm] \chi [/mm] = [mm] \{0,1\}^n [/mm] und als Klasse der möglichen Verteilungen ergibt sich [mm] \mathcal{P} [/mm] = [mm] \{P_{\theta} : 0 \le \theta \le 1\}, [/mm] wobei [mm] P_{\theta} [/mm] die Massenfunktion [mm] p((x_1,...,x_n) [/mm] | [mm] \theta) [/mm] = [mm] \produkt_{i=1}^{n} \theta^{x_i} \cdot (1-\theta)^{1-x_i} [/mm] [...]"
Also das "[...]" soll heißen die Aufgabe geht weiter, aber den Rest verstehe ich. Es ist ein Bsp. aus unserem Skript, jedoch ist mir unklar, wie sie hier die MAssenfunktion hergeleitet haben, also quasi das hier:
[mm] \produkt_{i=1}^{n} \theta^{x_i} \cdot (1-\theta)^{1-x_i}
[/mm]
Danke schonmal!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:07 Sa 10.07.2010 | Autor: | luis52 |
Moin Hanz,
zunaechst ein
Betrachte das Ereignis [mm] $A\overline{A}A$. [/mm] Seine Wahrscheinlichkeit kannst
du schreiben als
[mm] $P(A\overline{A}A)=\prod_{i=1}^3\theta^{x_i}(1-\theta)^{1-x_i}$
[/mm]
mit [mm] $x_1=1,x_2=0,x_3=1$ [/mm] ...
vg Luis
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Sa 10.07.2010 | Autor: | Marcel |
Hallo,
> Hallo,
>
> also ich habe bei einer Aufgabe ein Problem, und zwar:
>
> "Ein Zufallsexperiment, in dem ein Ereignis A die
> Wahrscheinlichkeit [mm]\theta[/mm] hat, wird n-mal unabhängig
> wiederholt; [mm]\theta[/mm] ist zu schätzen. Schreiben wir 1 für
> das Eintreten von A und sonst 0, so sind die gewonnen Daten
> ein Element von [mm]\chi[/mm] = [mm]\{0,1\}^n[/mm] und als Klasse der
> möglichen Verteilungen ergibt sich [mm]\mathcal{P}[/mm] =
> [mm]\{P_{\theta} : 0 \le \theta \le 1\},[/mm] wobei [mm]P_{\theta}[/mm] die
> Massenfunktion [mm]p((x_1,...,x_n)[/mm] | [mm]\theta)[/mm] =
> [mm]\produkt_{i=1}^{n} \theta^{x_i} \cdot (1-\theta)^{1-x_i}[/mm]
> [...]"
>
> Also das "[...]" soll heißen die Aufgabe geht weiter, aber
> den Rest verstehe ich. Es ist ein Bsp. aus unserem Skript,
> jedoch ist mir unklar, wie sie hier die MAssenfunktion
> hergeleitet haben, also quasi das hier:
> [mm]\produkt_{i=1}^{n} \theta^{x_i} \cdot (1-\theta)^{1-x_i}[/mm]
es sollte aus der Unabhängigkeit der Experimente folgen. Ich denke, dass man das analog zu folgender Überlegung erhält:
Seien [mm] $X_i$ ($i=1,\ldots,n$) [/mm] alle $B(1,p)$ verteilt, d.h. [mm] $P(X_i=1)=p$ [/mm] und [mm] $P(X_i=0)=1-p$. [/mm] Dann ist [mm] $\sum_{k=1}^n X_k$ [/mm] eine $B(n,p)$-verteilte Zufallsvariable, wenn die [mm] $X_i$ [/mm] unabhängig sind.
Dies ist eine alternative Modellierung dafür, dass man z.B. beim $n-$fachen Werfen einer Münze, wenn die Wahrscheinlichkeit für Kopf (dann ist [mm] $X_i=1$) [/mm] mit [mm] $p\,$ [/mm] bezeichnet sei, man dann nach den [mm] $n\,$ [/mm] Würfen genau [mm] $k\,$-mal [/mm] Kopf geworfen hat.
Nachrechnen zeigt:
[mm] $$P(\sum_{i=1}^n X_i=k)={n \choose k}p^k (1-p)^{n-k}\,.$$
[/mm]
Der Vorteil ist, dass man erkennt, dass die Unabhängigkeit bei der Berechnung von [mm] $P(\sum_{i=1}^n X_i=k)\,,$ [/mm] sprich: Bei der Verteilung von [mm] $\sum_{i=1}^n X_i\,,$ [/mm] wesentlich einhergeht (dazu muss man natürlich noch ein wenig mit Schnitten etc. arbeiten).
Zudem wird hier das wesentliche, die Unabhängigkeit und die Verteilungen, im Gegensatz zu der Modellierung mit [mm] $\{0,1\}^n$, [/mm] hervorgehoben.
Beste Grüße,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:33 So 11.07.2010 | Autor: | Hanz |
Vielen Dank euch beiden!!!!
|
|
|
|