matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLikelihood
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Likelihood
Likelihood < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 19.02.2013
Autor: Fatih17

Aufgabe
Für b>1 sind die stetigen Gleichverteilungen U(0,b) definiert durch die Dichten

[mm] f(x)=\begin{cases} \bruch{1}{b}, & \mbox{für } 0
Seien [mm] X_{1},...,X_{n} [/mm] Zven, die identisch stetig gleichverteilt sind und positive Werte annehmen.

a) Bestimmen Sie die Likelihood-Funktion [mm] L(X_{1},...,X_{n};b) [/mm] für einen Schätzer bezüglich b.

b) Bestimmen Sie den Maximum.Likelihood-Schätzer für b.

Guten Abend,

ich habe leider keinen Ansatz für diese Aufgabe, da es zu Likelihood nicht sehr viel brauchbares im Internet gibt.

Würde mich über eine Erklärung der Likelihood für Dummies sehr freuen.

Vielen Dank im voraus.

MFG
Fatih

        
Bezug
Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 19.02.2013
Autor: steppenhahn

Hallo,


> Für b>1 sind die stetigen Gleichverteilungen U(0,b)
> definiert durch die Dichten
>  
> [mm]f(x)=\begin{cases} \bruch{1}{b}, & \mbox{für } 0
>  
> Seien [mm]X_{1},...,X_{n}[/mm] Zven, die identisch stetig
> gleichverteilt sind und positive Werte annehmen.
>  
> a) Bestimmen Sie die Likelihood-Funktion
> [mm]L(X_{1},...,X_{n};b)[/mm] für einen Schätzer bezüglich b.

Mit der Likelihood wird üblicherweise die gemeinsame Dichte der Zufallsvariablen bezeichnet. Diese hängt daher von Realisierungen [mm] $x_1,...,x_n$ [/mm] sowie vom Parameter $b$ ab. Wenn man einen Schätzer [mm] $\hat [/mm] b$ für $b$ hat, kann man diesen daher für b in die Likelihood einsetzen. Also:

[mm] $L(x_1,...,x_n,b) [/mm] = [mm] f_{X_1,...,X_n}(x_1,...,x_n) [/mm] = [mm] \prod_{i=1}^{n}\left(\frac{1}{b}\cdot 1_{[0,b]}(x_i)\right)$ [/mm]



> b) Bestimmen Sie den Maximum.Likelihood-Schätzer für b.


Gesucht ist der Wert b, welcher die Likelihood maximiert. Du darfst dafür annehmen, dass die [mm] $x_1,...,x_n \in [/mm] [0,b]$ sind (du musst den Ausdruck also nur für Werte $x$ betrachten, die bei der Wahrscheinlichkeitsverteilung überhaupt auftreten können).

Das Maximum musst du hier durch "Hinschauen" ermitteln, ableiten usw. geht nicht.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]