matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLimes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Limes
Limes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 03.12.2005
Autor: Nescio

Hallo,

ich habe die folgende Aufgabe zu lösen:
(a)  [mm] \limes_{n\rightarrow\infty} \wurzel[n]{n}=1 [/mm]
Habe dazu bisher folgendes:
z.z: [mm] \forall \varepsilon>0 \exists N\in \IN \forall n\ge [/mm] N:
[mm] |\wurzel[n]{n}-1|< \varepsilon [/mm]
Nach der Bernoullischen Ungleichung [mm] (\forall [/mm] x [mm] \ge [/mm] -1) erhalte ich:
[mm] (1+(\wurzel[n]{n}-1)^{n} \ge [/mm] 1+ [mm] n(\wurzel[n]{n}-1) [/mm]
[mm] \gdw [/mm] n [mm] \ge [/mm] 1+ [mm] n(\wurzel[n]{n}-1) [/mm] dann gilt auch:
          n [mm] \ge n(\wurzel[n]{n}-1) [/mm]   |:n
[mm] \gdw [/mm]  1 [mm] \ge n(\wurzel[n]{n}-1) [/mm]

also es lässt sich schreiben:
[mm] |\wurzel[n]{n}-1| \ge [/mm] 1 < [mm] \varepsilon [/mm]
irgendiwe fehlt mir hier die N Bestimmung. Was habe ich falsch gemacht? Wie kann ich mein N bestimmen?

Vielen Dank im Voraus!:)


        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 03.12.2005
Autor: MrPink

Hallo, wenn ihr L'hopital benutzen dürft geht es wesentlich einfacher:

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Sa 03.12.2005
Autor: MrPink

Das x beim limes soll natürlich ein n sein

Bezug
                
Bezug
Limes: Mitteilung und Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:33 So 04.12.2005
Autor: Nescio

Hallo:),
danke für deine Antwort. Lieder haben wir bisher das, was du vorgeschlagen hast noch nicht gemacht. Wir sollen die Aufgabe durch Epsilon und N-Bestimmung lösen. Ist mein Weg den so richtig??

Danke: im Voraus!

Bezug
                        
Bezug
Limes: Fehler
Status: (Antwort) fertig Status 
Datum: 13:27 So 04.12.2005
Autor: leduart

Hallo Nescio
Du hast leider nix bewiesen!

> ich habe die folgende Aufgabe zu lösen:
>  (a)  [mm]\limes_{n\rightarrow\infty} \wurzel[n]{n}=1[/mm]
>  Habe
> dazu bisher folgendes:
>  z.z: [mm]\forall \varepsilon>0 \exists N\in \IN \forall n\ge[/mm]
> N:
> [mm]|\wurzel[n]{n}-1|< \varepsilon[/mm]
>  Nach der Bernoullischen
> Ungleichung [mm](\forall[/mm] x [mm]\ge[/mm] -1) erhalte ich:
>  [mm](1+(\wurzel[n]{n}-1)^{n} \ge[/mm] 1+ [mm]n(\wurzel[n]{n}-1)[/mm]
>   [mm]\gdw[/mm] n [mm]\ge[/mm] 1+ [mm]n(\wurzel[n]{n}-1)[/mm] dann gilt auch:
>            n [mm]\ge n(\wurzel[n]{n}-1)[/mm]   |:n
>  [mm]\gdw[/mm]  1 [mm]\ge n(\wurzel[n]{n}-1)[/mm]

hier ist ein Schreibfehler
[mm]\gdw[/mm]  1 [mm]\ge 1*(\wurzel[n]{n}-1)[/mm]  

> also es lässt sich schreiben:
>  [mm]|\wurzel[n]{n}-1| \ge[/mm] 1 < [mm]\varepsilon[/mm]

hier hast du die Ungleichung umgekehrt?
du hast nur gezeigt, dass  [mm]|\wurzel[n]{n}-1| \le[/mm] 1,d.h. dass [mm] \wurzel[n]{n} [/mm] zwischen 1 und 2 liegt! also noch nichts nützliches.
betrachte [mm] (1+e_{n})^{n}>n [/mm]  und suche ne Nullfolge [mm] e_{n} [/mm] die das tut.
Bernoulli allein genügt nicht:
[mm] (1+e_{n})^{n} [/mm] > [mm] 1+n*e_{n}+n*(n-1)/2*e_{n}^{2}>n*(n-1)/2*e_{n}^{2} [/mm]
mit [mm] e_{n}^{2}=2/(n-1) [/mm] hast du ne Nullfolge und  [mm] (1+e_{n})^{n}>n [/mm] also nimm dein [mm] N=2/\varepsilon^{2}+1. [/mm]
Was du in der letzten Zeile geschrieben hast, musst du doch wohl selbst als Unsinn sehen!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]