matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLimes superior
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Limes superior
Limes superior < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes superior: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:55 Di 28.11.2006
Autor: golfstudent

Aufgabe
Beispiel:
Folge [mm] b_{n}:= (-1)^{n} (1+\bruch{1}{n}) n\ge1. [/mm] Hier ist
sup [mm] {{b_{k}:k \ge n}}= \begin{cases} 1+\bruch{1}{n}, & \mbox{falls } n \mbox{ gerade} \\ 1+\bruch{1}{n+1}, & \mbox{falls } n \mbox{ ungerade} \end{cases} [/mm]

Also gilt [mm] \limes_{n\rightarrow\infty}sup b_{n} [/mm] = 1




Aufgabe:

Bestimmen Sie den Limes superior der Folgen [mm] (a_{n})_{n \in \IN} [/mm] für

a)  [mm] a_{n}:= (-1)^{n} [/mm]   (n [mm] \in \IN) [/mm]

b)  [mm] a_{n}:= \begin{cases} \bruch{2n^{2}+3}{3n^{2}}, & \mbox{falls } n \mbox{ gerade} \\ \bruch{1}{n}, & \mbox{falls } n \mbox{ ungerade} \end{cases} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

habe das obere Beispiel in einem Buch gefunden und kann leider nicht nachvollziehen wie man auf den zweiten Term [mm] "1+\bruch{1}{n+1} [/mm]  falls n ungerade" kommt. Für ungerade n wird doch das [mm] (-1)^{n} [/mm] immer zu
(-1), somit müsste es doch heißen [mm] -(1+\bruch{1}{n}) [/mm] wie kommt man da auf [mm] 1+\bruch{1}{n+1} [/mm] ?


Bei der unteren Aufgabe habe ich bei

a) zwei Häufungspunkte: für [mm] a_{2k}:= (-1)^{2k} [/mm] = 1 und für [mm] a_{2k+1}:= (-1)^{2k+1} [/mm] = -1, somit lim sup a{n} = 1

b) erhalte ich lim sup a{n} = [mm] \bruch{2}{3} [/mm]

Liege ich damit richtig oder hat jemand einen Fehler entdeckt.
In der Thematik "Limes superior" bin ich nämlich noch nicht ganz so sattelfest.

Vielen Dank schon mal für eure Hilfe!

        
Bezug
Limes superior: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 30.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]