Limes von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:26 Do 15.11.2012 | Autor: | balstobi |
Aufgabe | Berechnen Sie den Limes der Folge [mm] a_{n} [/mm] mit [mm] a_{0}= [/mm] 1 und [mm] a_{n+1}= \wurzel{1+\wurzel{1+\wurzel{1+\wurzel{1+\wurzel{1}...}}}}= [/mm] |
Auch hier bräuchte ich wieder einen Ansatz. Ich hab mich gerade in versch. Themen reingerarbeitet, aber weiß noch nicht wann und wie ich was anwenden soll.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:29 Do 15.11.2012 | Autor: | fred97 |
> Berechnen Sie den Limes der Folge [mm]a_{n}[/mm] mit [mm]a_{0}=[/mm] 1 und
> [mm]a_{n+1}= \wurzel{1}+\wurzel{1}+\wurzel{1}+\wurzel{1}+\wurzel{1}...[/mm]
Das lautet ganz bestimmt nicht so !
Das
[mm] mm]a_{n+1}= \wurzel{1}+\wurzel{1}+\wurzel{1}+\wurzel{1}+\wurzel{1}...[/mm]
[/mm]
ist völlig sinnlos !!!! [mm] \wurzel{1}=1 [/mm] !
Wie lautet das korrekt ?
FRED
>
> Auch hier bräuchte ich wieder einen Ansatz. Ich hab mich
> gerade in versch. Themen reingerarbeitet, aber weiß noch
> nicht wann und wie ich was anwenden soll.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:34 Do 15.11.2012 | Autor: | balstobi |
Die Wurzeln stehen jeweils nochmal unter einer Wurzel, also es steht [mm] \wurzel{1} [/mm] + [mm] \wurzel{1} [/mm] aber die zweite Wurzel 1 noch immer unter dem ersten [mm] \wurzel{1}. [/mm] Die erste Wurzel ist über alle folgende Wurzeln gezogen, die 2. ist über alle der 2. folgenden Wurzeln gezogen, die 3. Wurzel steht über allen der 3. Wurzel folgenden Wurzeln usw.
|
|
|
|
|
Hallo balstobi,
> Berechnen Sie den Limes der Folge [mm]a_{n}[/mm] mit [mm]a_{0}=[/mm] 1 und
> [mm]a_{n+1}= \wurzel{1+\wurzel{1+\wurzel{1+\wurzel{1+\wurzel{1}...}}}}=[/mm]
Also [mm] $a_{n+1}=\sqrt{1+a_n}$
[/mm]
>
> Auch hier bräuchte ich wieder einen Ansatz. Ich hab mich
> gerade in versch. Themen reingerarbeitet, aber weiß noch
> nicht wann und wie ich was anwenden soll.
Zeige, dass die Folge monoton wachsend ist und nach oben beschränkt (etwa durch 2)
Damit ist sie konvergent, es ex. also [mm] $a:=\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}a_{n+1}$
[/mm]
Daraus kannst du $a$ berechnen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
schachuzipus
|
|
|
|