matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungLin. Näherung mit quad. Mittel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Lin. Näherung mit quad. Mittel
Lin. Näherung mit quad. Mittel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Näherung mit quad. Mittel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Fr 29.06.2007
Autor: NixwisserXL

Aufgabe
Welche Gerade g(x)=mx+b ist für die Potenzfunktion [mm] f(x)=x^3 [/mm] im Intervall -4 < x < 6 die (im quad. Mittel) beste lineare Näherung?

Lösung: g(x)=18x+8

Hallo,

bei dieser Aufgabe komme ich einfach nicht weiter, da sich meine Aufzeichnungen anscheinend fehlerhaft sind.

Ich habe folgenden Ansatz:

(1) -2* [mm] \integral_{-4}^{6}{[x^3-mx-b] dx} [/mm]  = 0

(2) -2* [mm] \integral_{-4}^{6}{[x^3-mx-b]x dx} [/mm] = 0

Jetzt bin ich mir jedoch nicht sicher, ob die Integrale richtig aufgestellt sind und ob -2 vor den Integralen richtig ist.

Mit dem Integral (1) sollte ich wahrscheinlich die Steigung m erhalten und mit (2) den Schnittpunkt b, doch leider bin ich bisher gescheitert.

Ich würde mich über ein wenig Hilfestellung freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lin. Näherung mit quad. Mittel: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Sa 30.06.2007
Autor: Gonozal_IX

Hiho,

deine Integrale führen auf jeden Fall zur richtigen Lösung, zumal der Faktor vor den Integralen letztendlich egal ist (die Gleichung ist = 0 !). Ob vor dem Integral also nun der Faktor 1,-2 oder [mm] \pi [/mm] steht, ist für die Lösung an sich unerheblich.
Mir war immer so, als wenn vor dem Integral 1/Intervalllänge stehen müsste, das wäre in diesem Fall dann [mm] \bruch{1}{10}. [/mm]
Aber wie gesagt, letztendlich ists egal ;-)

Achja: Du kriegst natürlich mit (1) nicht direkt m und mit (2) nicht direkt b raus. Vielmehr erhälst du für (1) eine Gleichung mit m und b und für (2) auch. Dann hast du ein Gleichungssystem, was du lösen kannst und hier kommt auch schön raus: m = 18, b = 8

(Als Tip, das erste Integral bringt dich auf 26 = m + b, das zweite kannste ja selbst noch machen :-) )

Gruß,
Gono.

Bezug
        
Bezug
Lin. Näherung mit quad. Mittel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Sa 30.06.2007
Autor: NixwisserXL

Vielen Dank für die schnelle Antwort.

Ich konnte die Aufgabe zum Glück noch in einer Nacht-und Nebelaktion lösen. Die Faktoren vor dem Integral konnte ich mir auch nicht erklären und habe sie daher nur zur Sicherheit mit abgeschrieben.
Ich hatte mich bei den Integralen immer wieder verzettelt, dabei ist die Lösung sehr simpel.

Dank deiner Bestätigung kann ich wieder beruhigt schlafen:)

Vielen Dank nochmal!

MfG
NixwisserXl


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]