matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLinare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Linare Abbildungen
Linare Abbildungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linare Abbildungen: Unterraum
Status: (Frage) beantwortet Status 
Datum: 17:26 So 18.10.2009
Autor: Pacapear

Hallo zusammen!

Ich habe hier einen Satz, der mir sagt, dass die Menge $Hom(V,K) [mm] \subset [/mm] Abb(V,K)$ aller linearen Abbildungen von V nach K ein Unterraum und damit selbst wieder ein Vektorraum ist.

Ich weiß jetzt nicht, wie ich das für mich überprüfen kann.

Also ich weiß mittlerweile, wie ich Abbildungen in einem Vektorraum addiere und skalarmultipliziere, nämlich [mm] $(f_1,f_2) \mapsto f_1 \oplus f_2$ [/mm] mit [mm] $(f_1 \oplus f_2)(x):=f_1(x)+f_2(x)$ [/mm] und $(k,f) [mm] \mapsto [/mm] k [mm] \odot [/mm] f$ mit $(k [mm] \odot [/mm] f)(x):=k*f(x)$.

Das gilt ja genauso für lineare Abbildungen, da sie ja eine Teilmenge davon sind.

Aber voher weiß ich, dass die Summe zweier linearer Abbildungen wieder eine lineare Abbildung ist und beim Skalarprodukt genauso?

Weil ich muss ja prüfen:
1) $f [mm] \in [/mm] Hom(V,K), g [mm] \in [/mm] Hom(V,K) [mm] \Rightarrow [/mm] f [mm] \oplus [/mm] g [mm] \in [/mm] Hom(V,K)$
1) $f [mm] \in [/mm] Hom(V,K), k [mm] \in [/mm] K [mm] \Rightarrow [/mm] k [mm] \odot [/mm] f [mm] \in [/mm] Hom(V,K)$

Aber ich weiß nicht, wie ich das zeigen kann, dass $f [mm] \oplus [/mm] g$ und $k [mm] \odot [/mm] f$ auch wirklich wieder in $Hom(V,K)$ liegen.

Kann mir jemand weiterhelfen?

LG, Nadine

        
Bezug
Linare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 So 18.10.2009
Autor: angela.h.b.


> Weil ich muss ja prüfen:
>  1) [mm]f \in Hom(V,K), g \in Hom(V,K) \Rightarrow f \oplus g \in Hom(V,K)[/mm]
>  
> 1) [mm]f \in Hom(V,K), k \in K \Rightarrow k \odot f \in Hom(V,K)[/mm]
>  
> Aber ich weiß nicht, wie ich das zeigen kann, dass [mm]f \oplus g[/mm]
> und [mm]k \odot f[/mm] auch wirklich wieder in [mm]Hom(V,K)[/mm] liegen.

Hallo,

woran erkennst Du, ob eine Abbildung linear ist? Daran, daß sie die beiden Linearitätsbedingungen erfüllt.

Du mußt also prüfen, ob, sofern f und g Homomorphismen sind,

auch für f [mm] \oplus [/mm] g gilt:

für alle x,y [mm] \in [/mm] V ist  (f [mm] \oplus [/mm] g)(x+y)=(f [mm] \oplus [/mm] g)(x) + (f [mm] \oplus [/mm] g)(y),

für k [mm] \odot [/mm] f  analog.

Gruß v. Angela

Bezug
                
Bezug
Linare Abbildungen: So richtig?
Status: (Frage) beantwortet Status 
Datum: 18:28 So 18.10.2009
Autor: Pacapear

Hallo Angela!



> Du mußt also prüfen, ob, sofern f und g Homomorphismen
> sind,
>  
> auch für f [mm]\oplus[/mm] g gilt:
>  
> für alle x,y [mm]\in[/mm] V ist  (f [mm]\oplus[/mm] g)(x+y)=(f [mm]\oplus[/mm] g)(x)
> + (f [mm]\oplus[/mm] g)(y),
>  
> für k [mm]\odot[/mm] f  analog.

Dann versuch ich das mal:

Also damit $f [mm] \oplus [/mm] g [mm] \in [/mm] Hom(V,K)$ muss gelten:
1) $(f [mm] \oplus [/mm] g)(x+y)=(f [mm] \oplus [/mm] g)(x)+(f [mm] \oplus [/mm] g)(y)$
2) $(f [mm] \oplus g)(\lambda*x)=\lambda*(f \oplus [/mm] g)(x)$

Und damit $k [mm] \odot [/mm] f [mm] \in [/mm] Hom(V,K)$ muss gelten:
3) [mm] $(\lambda \odot [/mm] f)(x+y)=(k [mm] \odot [/mm] f)(x)+(k [mm] \odot [/mm] f)(y)$
4) [mm] $(\lambda \odot f)(k*x)=k*(\lambda \odot [/mm] f)(x)$



Beweis für 1)

$(f [mm] \oplus [/mm] g)(x+y)=f(x+y)+g(x+y)$ nach Defintion der Summe $=f(x)+f(y)+g(x)+g(y)$ da f und g linear $=f(x)+g(x)+f(y)+g(y)=(f [mm] \oplus [/mm] g)(x)+(f [mm] \oplus [/mm] g)(y)$



Beweis für 2)

$(f [mm] \oplus g)(\lambda*x)=f(\lambda*x)+g(\lambda*x)$ [/mm] nach Defintion der [mm] Summe$=\lambda*f(x)+\lambda*g(x)$ [/mm] da f und g linear [mm] $=\lambda*(f(x)+g(x))=\lambda*(f \oplus g)(\lambda*x)$ [/mm]



Beweis für 3)

[mm] $(\lambda \odot f)(x+y)=\lambda [/mm] * f(x+y)$ nach Defintion der Skalarmultiplikation [mm] $=\lambda [/mm] * (f(x)+f(y)$ da f linear [mm] $=\lambda [/mm] * f(x) + [mm] \lambda [/mm] * f(y) = [mm] (\lambda \odot [/mm] f)(x) + [mm] (\lambda \odot [/mm] f)(y)$



Beweis für 4)

[mm] $(\lambda \odot f)(k*x)=\lambda [/mm] * f(k*x)$ nach Defintion der Skalarmultiplikation [mm] $=k*\lambda [/mm] * f(x)$ da f linear [mm] $=k*(\lambda \odot [/mm] f)(x)$



Ich bin mir jetzt überhaupt nicht sicher, ob ich immer richtig zwischen [mm] \oplus [/mm] und $+$ und zwischen [mm] \odot [/mm] und $*$ unterschieden habe...
Zwischen x und y müsste ja eigentlich auch immer [mm] \oplus [/mm] statt $+$ stehen, weil x und y ja Elemente aus dem Vektorraum V sind...

Und in Büchern steht statt $Hom(V,K)$ immer allgemein $Hom(V,W)$ mit V und W beides Vektorräume, dann müsste ja [mm] $(f_1 \oplus f_2)(x):=f_1(x)+f_2(x)$ [/mm] (normales Plus, weil [mm] f_1(x) [/mm] und [mm] f_2(x) [/mm] beides Elemente/Funktionswerte aus Körper K) jetzt eigentlich als [mm] $(f_1 \oplus f_2)(x):=f_1(x) \oplus f_2(x)$ [/mm] geschrieben werden, weil ja jetzt die Funktionswerte [mm] f_1(x) [/mm] und [mm] f_2(x) [/mm] auch Elemente eines Vektorraums sind, nämlich von W...

Das ist alles irgendwie total wirr gerade... :-(

Was macht man da am besten, um keine Fehler zu machen?



LG, Nadine

Bezug
                        
Bezug
Linare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:17 Mo 19.10.2009
Autor: felixf

Hallo Nadine!

> > Du mußt also prüfen, ob, sofern f und g Homomorphismen
> > sind,
>  >  
> > auch für f [mm]\oplus[/mm] g gilt:
>  >  
> > für alle x,y [mm]\in[/mm] V ist  (f [mm]\oplus[/mm] g)(x+y)=(f [mm]\oplus[/mm] g)(x)
> > + (f [mm]\oplus[/mm] g)(y),
>  >  
> > für k [mm]\odot[/mm] f  analog.
>  
> Dann versuch ich das mal:
>  
> Also damit [mm]f \oplus g \in Hom(V,K)[/mm] muss

...fuer alle $x, y [mm] \in [/mm] V$ und [mm] $\lambda \in [/mm] K$...

> gelten:
>  1) [mm](f \oplus g)(x+y)=(f \oplus g)(x)+(f \oplus g)(y)[/mm]
>  2)
> [mm](f \oplus g)(\lambda*x)=\lambda*(f \oplus g)(x)[/mm]
>  
> Und damit [mm]k \odot f \in Hom(V,K)[/mm] muss

...fuer alle $x, y [mm] \in [/mm] V$ und [mm] $\lambda \in [/mm] K$...

> gelten:
>  3) [mm](\lambda \odot f)(x+y)=(k \odot f)(x)+(k \odot f)(y)[/mm]
>  
> 4) [mm](\lambda \odot f)(k*x)=k*(\lambda \odot f)(x)[/mm]
>  
>
>
> Beweis für 1)
>  
> [mm](f \oplus g)(x+y)=f(x+y)+g(x+y)[/mm] nach Defintion der Summe
> [mm]=f(x)+f(y)+g(x)+g(y)[/mm] da f und g linear
> [mm]=f(x)+g(x)+f(y)+g(y)=(f \oplus g)(x)+(f \oplus g)(y)[/mm]

[ok]

> Beweis für 2)
>  
> [mm](f \oplus g)(\lambda*x)=f(\lambda*x)+g(\lambda*x)[/mm] nach
> Defintion der Summe[mm]=\lambda*f(x)+\lambda*g(x)[/mm] da f und g
> linear [mm]=\lambda*(f(x)+g(x))=\lambda*(f \oplus g)(\lambda*x)[/mm]

[ok]

> Beweis für 3)
>  
> [mm](\lambda \odot f)(x+y)=\lambda * f(x+y)[/mm] nach Defintion der
> Skalarmultiplikation [mm]=\lambda * (f(x)+f(y)[/mm] da f linear
> [mm]=\lambda * f(x) + \lambda * f(y) = (\lambda \odot f)(x) + (\lambda \odot f)(y)[/mm]

[ok]

> Beweis für 4)
>  
> [mm](\lambda \odot f)(k*x)=\lambda * f(k*x)[/mm] nach Defintion der
> Skalarmultiplikation [mm]=k*\lambda * f(x)[/mm] da f linear
> [mm]=k*(\lambda \odot f)(x)[/mm]

[ok]

> Ich bin mir jetzt überhaupt nicht sicher, ob ich immer
> richtig zwischen [mm]\oplus[/mm] und [mm]+[/mm] und zwischen [mm]\odot[/mm] und [mm]*[/mm]
> unterschieden habe...

Hast du.

>  Zwischen x und y müsste ja eigentlich auch immer [mm]\oplus[/mm]
> statt [mm]+[/mm] stehen, weil x und y ja Elemente aus dem Vektorraum
> V sind...

Dann muss da aber nicht [mm] $\oplus$ [/mm] stehen, da die Addition des Vektorraums $V$ mit $+$ bezeichnet wird. Nur die Addition des Vektorraums $Abb(V, K)$ wird hier mit [mm] $\oplus$ [/mm] bezeichnet.

> Und in Büchern steht statt [mm]Hom(V,K)[/mm] immer allgemein
> [mm]Hom(V,W)[/mm] mit V und W beides Vektorräume, dann müsste ja
> [mm](f_1 \oplus f_2)(x):=f_1(x)+f_2(x)[/mm] (normales Plus, weil
> [mm]f_1(x)[/mm] und [mm]f_2(x)[/mm] beides Elemente/Funktionswerte aus
> Körper K) jetzt eigentlich als [mm](f_1 \oplus f_2)(x):=f_1(x) \oplus f_2(x)[/mm]
> geschrieben werden, weil ja jetzt die Funktionswerte [mm]f_1(x)[/mm]
> und [mm]f_2(x)[/mm] auch Elemente eines Vektorraums sind, nämlich
> von W...

Nein, da wird die Addition ebenfalls ueberall als $+$ geschrieben: solange du Elemente aus $V$ oder $W$ addierst, verwendest du $+$. Erst wenn du Elemente aus $Hom(V, W)$ addierst, verwendest du [mm] $\oplus$. [/mm] (Bzw. spaeter auch $+$, wenn man akzeptiert hat das es so zu einem Vektorraum wurde und man keine Angst mehr hat da etwas zu verwechseln.)

> Das ist alles irgendwie total wirr gerade... :-(
>  
> Was macht man da am besten, um keine Fehler zu machen?

Immer schauen, was du da eigentlich addierst. Bei $f$ und $g$ addierst du Elemente aus $Hom(V, K)$, also nimmst du [mm] $\oplus$. [/mm] Bei $x$ und $y$ addierst du Elemente aus $V$, also nimmst du $+$. Bei $f(x)$ und $f(y)$ addierst du Elemente aus $K$ (oder aus $W$), also nimmst du ebenfalls $+$.

LG Felix


Bezug
                                
Bezug
Linare Abbildungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Mo 19.10.2009
Autor: Pacapear

Vielen Dank für eure Hilfe!

LG, Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]