matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLinear unabhängige Teilmengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Linear unabhängige Teilmengen
Linear unabhängige Teilmengen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear unabhängige Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 05.12.2010
Autor: Stern1605

Aufgabe
Gegeben sind die Vektoren

[mm] v_1 [/mm] = [mm] \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix} [/mm] , [mm] v_2 [/mm] = [mm] \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}, v_3 [/mm] = [mm] \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, v_4 [/mm] = [mm] \begin{pmatrix} -1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, v_5 [/mm] = [mm] \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} [/mm]

Geben Sie alle linear unabhängigen Teilmengen von [mm] {v_1, v_2, v_3, v_4, v_5} [/mm] an. Natürlich mit Beweis!

Heißt das, dass ich alle Kombinationen von Vektoren angeben muss, die linear unabhängig sind? Also zum Beispiel [mm] v_3, v_4 [/mm] und [mm] v_5? [/mm] Oder geht das nicht, weil ich dann nur für [mm] x_1 [/mm] und [mm] x_2 [/mm] eine Lösung (nämlich 0) hätte?

Und wenn das so richtig ist, wie sieht dann der Beweis aus? Muss ich die Gleichungssysteme lösen im obigen Beispiel für [mm] x_1 [/mm] und [mm] x_2 [/mm] gleich 0?

Vielen Dank schon einmal im Voraus!

Julia

        
Bezug
Linear unabhängige Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 05.12.2010
Autor: wonda

Guck dir an wie du [mm] v_{1} [/mm] bis [mm] v_{5} [/mm] kombinieren kannst ohne das die zusammengepackten Vektoren linear abhängig(l.a.) werden
als Bsp.:

Eine Teilmenge wäre  [mm] T_{1}:=\{v_{1}, v_{2}\} [/mm]
jetzt musst du zeigen ob [mm] v_{1} [/mm] und [mm] v_{2} [/mm] linear unabhängig(l.u.) sind oder eben nicht
ich denke ihr werdet das mit einem Gleichungssystem lösen(hörte sich bei dir so an)
also guckst du für welches [mm] \alpha [/mm] und [mm] \beta [/mm] gilt:
[mm] \alpha\*v_{1}+\beta\*v_{2}=0 [/mm]
gilt dies nur wenn [mm] \alpha=\beta=0 [/mm] dann sind die Vektoren l.u.

[mm] v_{5} [/mm] ist ein spezieller Vektor, der Nullvektor

Hilfe: [mm] \alpha\*\vektor{1 \\ -1\\0\\2}+\beta\*\vektor{0 \\ 0\\0\\0}=0 [/mm]
gibt es Lösungen bei denen [mm] \alpha [/mm] und  [mm] \beta \not=0 [/mm] sind
wenn ja folgt daraus doch aber das die Vektoren l.a. sind

hoffe das hilft dir weiter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]