matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lineare Abbildung bestimmen
Lineare Abbildung bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung bestimmen: Lineare ALGEBRA
Status: (Frage) beantwortet Status 
Datum: 17:06 Do 11.05.2006
Autor: maggi20

Aufgabe
Bestimmen Sie eine lineare Abbildung [mm] f:R^3 [/mm] nach [mm] R^4 [/mm] mit
(a) [mm] f(R^3)=<(1,2,0,4), [/mm] (2,0,-1,3)>
(b) Ke(f)=<(1,2,3),(1,2,4)
Gibt es eine lineare Abbildung, die beide Bedingungen (a),(b) erfüllt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Wie gehe ich da vor? Bitte, bitte helft mir. Ich dachte ich nehme di ekanonische Basis von [mm] R^3 [/mm] und und kriege mit der Matrix die Skalare heraus. Aber was mache ich mit der vierten Komponente in [mm] R^4? [/mm]
Liebe Grüsse
Magda

        
Bezug
Lineare Abbildung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 11.05.2006
Autor: DaMenge

Hallo und [willkommenmr],

Du suchst eine lineare Abbildung bzw. suchst du die Darstellungsmatrix einer linearen Abbildung von [mm] $f:\IR^3\to\IR^4$ [/mm] , d.h. du musst eine 4x3 Matrix heraus bekommen,wenn du die Abbildung als Matrix angeben willst.
(es würde aber auch ausreichen die Bilder einer Basis zu beschreiben)

Dein Ansatz die Bilder der kanonischen Basis entsprechend zu wählen ist richtig und man weiß ja : Die Bilder der Basisvektoren sind die Spalten der Darstellungsmatrix.

Also : wenn du [mm] $f(e_1)=\vektor{1\\2\\0\\4}$ [/mm] und [mm] $f(e_2)=\vektor{2\\0\\-1\\3}$ [/mm] wählst und den dritten Basisvektor entweder auf Null oder eine linearkombination der beiden vorherigen Bilder wirfst, dann ist das Bild sicher (nur) das, was in a) verlangt.
(und du kannst die drei Spalten der Matrix direkt angeben)


bei der b) geht es im Prinzip ähnlich - nur dass man jetzt Ursprungsvektoren gegeben hat und weiß, worauf sie abgebildet werden.
Also : suche dir einen dritten (zu den beiden in b) gegebenen Vektoren linear unabhängigen) Basisvektor [mm] b_3 [/mm] des [mm] $\IR^3$ [/mm]
(zum Beispiel der kanonische [mm] e_1 [/mm] )

und dann setze einfach: [mm] $f(b_1)=\vektor{0\\0\\0\\0}$ [/mm] und [mm] $f(b_2)=\vektor{0\\0\\0\\0}$ [/mm] und [mm] $f(b_3)=b_3$ [/mm] (oder irgendwas, was nicht 0 ist)

Dies reicht eigentlich schon als Beschreibung der Abbildung aus, aber wenn du schon weißt, wie die Darstellungsmatrix bzgl dieser neuen Basis aussieht, dann kannst du diese natürlich auch noch schnell angeben.

bei c) schaue dir doch mal die []Bild-Kern-Formel genau an.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]