matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Lineare Abhängigkeit
Lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 15.03.2009
Autor: Mandy_90

Aufgabe
Welche Bedingungen müssen die reellen Zahlen a und b erfüllen,damit die Vektoren [mm] \vektor{a \\ 2 \\ 1} [/mm] und [mm] \vektor{6 \\ b \\ 3} [/mm] linear abhängig sind?

Hallo zusammen^^

Kann jemand vielleicht nachschauen ob meine Lösung so in Ordnung ist?

[mm] r*\vektor{a \\ 2 \\ 1}+s*\vektor{6 \\ b \\ 3}=\vec{0} [/mm]

1.) ar+6s=0
2.) 2r+sb=0
3.) r+3s=0

WEnn ich alles ein wenig umforme un einsetze bekomme ich

r*(6-b)=0
s*(2-a)=0

Ich muss a und b so wähle,dass es nicht nur die triviale Lösung 0 gibt.
Aber ich versteh grad nicht,wie ich hier a und b einschränken kann bzw.eine Bedingung für die aufstellen kann,weil die hängen doch ganz von r und s ab ???
Kann mir da jemand weiterhelfen?

Vielen Dank

lg

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 So 15.03.2009
Autor: pelzig


> Welche Bedingungen müssen die reellen Zahlen a und b
> erfüllen,damit die Vektoren [mm]\vektor{a \\ 2 \\ 1}[/mm] und
> [mm]\vektor{6 \\ b \\ 3}[/mm] linear abhängig sind?
>  Hallo zusammen^^
>  
> Kann jemand vielleicht nachschauen ob meine Lösung so in
> Ordnung ist?
>  
> [mm]r*\vektor{a \\ 2 \\ 1}+s*\vektor{6 \\ b \\ 3}=\vec{0}[/mm]
>  
> 1.) ar+6s=0
>  2.) 2r+sb=0
>  3.) r+3s=0

Ok  

> WEnn ich alles ein wenig umforme un einsetze bekomme ich
>
> r*(6-b)=0
>  s*(2-a)=0

Wie kommst du darauf? Naja egal, warum nimmst du nicht Gleichung 3.), stellst sie nach r um und setzt das in 1.) + 2.) ein, stellst diese dann jeweils nach s um und erhälst dann eine Gleichung für a und b.

Es geht aber auch noch viel einfacher, denn wenn die beiden Vektoren linear abhängig sind, dann gibt es ein [mm] $\lambda\in\IR$ [/mm] mit [mm] $$\lambda\vektor{a \\ 2 \\ 1}=\vektor{6 \\ b \\ 3}$$Aus [/mm] der dritten Komponente folgt sofort [mm] $\lambda=3$, [/mm] und damit [mm]a=2[/mm] und [mm]b=6[/mm] oder so ähnlich.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]